Three-junction tandem photovoltaic cell for a wide temperature range based on a multilayer circular truncated cone metamaterial emitter
To improve the conversion efficiency of thermophotovoltaic devices, we designed a thermophotovoltaic system based on an InAs/InGaAsSb/GaSb three-junction tandem cell. The tandem cell can recover photons in the wavelength range of 200–3650 nm and therefore enhance the output power of the system. To f...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2020-11, Vol.210, p.118503, Article 118503 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve the conversion efficiency of thermophotovoltaic devices, we designed a thermophotovoltaic system based on an InAs/InGaAsSb/GaSb three-junction tandem cell. The tandem cell can recover photons in the wavelength range of 200–3650 nm and therefore enhance the output power of the system. To further improve system performance, we designed a multilayer circular truncated cone metamaterial emitter matching the tandem cell. Existing TPV systems based on multi-junction tandem PV cells can achieve conversion efficiencies of 33.3%–41%, while the thermophotovoltaic system coupled with the multilayer circular truncated cone metamaterial can recover more photons of 1.44 mol/(m2·s) and achieve a higher conversion efficiency of 52.8% at 1773 K. The thermophotovoltaic system designed here demonstrates an extremely high energy conversion efficiency and has good application prospects.
•Existing multijunction thermophotovoltaic systems need further optimization.•Multilayer Circular truncated Cone metamaterial was designed for the first time.•The combination of three-junction tandem cell and metamaterials was first proposed.•The new system gets a efficiency of 55.6%, which has broad application prospects. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2020.118503 |