On the second largest eigenvalue of the generalized distance matrix of graphs
For a simple connected graph G, let D(G), Tr(G), DL(G) and DQ(G), respectively be the distance matrix, the diagonal matrix of the vertex transmissions, distance Laplacian matrix and the distance signless Laplacian matrix of a graph G. The generalized distance matrix Dα(G) is a convex linear combinat...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2020-10, Vol.603, p.226-241 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | |
container_start_page | 226 |
container_title | Linear algebra and its applications |
container_volume | 603 |
creator | Alhevaz, Abdollah Baghipur, Maryam Ganie, Hilal Ahmad |
description | For a simple connected graph G, let D(G), Tr(G), DL(G) and DQ(G), respectively be the distance matrix, the diagonal matrix of the vertex transmissions, distance Laplacian matrix and the distance signless Laplacian matrix of a graph G. The generalized distance matrix Dα(G) is a convex linear combinations of Tr(G) and D(G) and defined as Dα(G)=αTr(G)+(1−α)D(G), 0≤α≤1. As D0(G)=D(G), 2D12(G)=DQ(G), D1(G)=Tr(G) and Dα(G)−Dβ(G)=(α−β)DL(G), this matrix reduces to merging the distance spectral, distance Laplacian spectral and distance signless Laplacian spectral theories. In this paper, we take effort to obtain some upper and lower bounds for the second largest eigenvalue of the generalized distance matrix of graphs, in terms of various graph parameters. The graphs attaining the corresponding bounds are characterized. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a connected graph due to Aouchiche and Hansen [6]. We also show that the star graph Sn has the smallest second largest generalized distance eigenvalue among all trees of order n. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a tree due to Aouchiche and Hansen [10]. |
doi_str_mv | 10.1016/j.laa.2020.05.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2456877955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520302664</els_id><sourcerecordid>2456877955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e0eb0bb6ad644e1139c489e6ccdec41b28b1f83ee9c66ea93571780d0c5b365a3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANwicU5Y27HjiBOq-JOKeoGz5dib1lWaFDutgKfHpZw5rVaa2Z35CLmmUFCg8nZddMYUDBgUIApg6oRMqKp4TpWQp2QCwMqcV7U4JxcxrgGgrIBNyOuiz8YVZhHt0LusM2GJcczQL7Hfm26H2dD-CtKOwXT-G13mfBxNbzHbmDH4z4NkGcx2FS_JWWu6iFd_c0reHx_eZs_5fPH0Mruf55YzMeYI2EDTSONkWSKlvLalqlFa69CWtGGqoa3iiLWVEk3NRUUrBQ6saLgUhk_JzfHuNgwfuxRYr4dd6NNLzUohVZWKiqSiR5UNQ4wBW70NfmPCl6agD9T0Widq-kBNg9CJWvLcHT2Y4u89Bh2tx9TV-YB21G7w_7h_AMVLdQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456877955</pqid></control><display><type>article</type><title>On the second largest eigenvalue of the generalized distance matrix of graphs</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alhevaz, Abdollah ; Baghipur, Maryam ; Ganie, Hilal Ahmad</creator><creatorcontrib>Alhevaz, Abdollah ; Baghipur, Maryam ; Ganie, Hilal Ahmad</creatorcontrib><description>For a simple connected graph G, let D(G), Tr(G), DL(G) and DQ(G), respectively be the distance matrix, the diagonal matrix of the vertex transmissions, distance Laplacian matrix and the distance signless Laplacian matrix of a graph G. The generalized distance matrix Dα(G) is a convex linear combinations of Tr(G) and D(G) and defined as Dα(G)=αTr(G)+(1−α)D(G), 0≤α≤1. As D0(G)=D(G), 2D12(G)=DQ(G), D1(G)=Tr(G) and Dα(G)−Dβ(G)=(α−β)DL(G), this matrix reduces to merging the distance spectral, distance Laplacian spectral and distance signless Laplacian spectral theories. In this paper, we take effort to obtain some upper and lower bounds for the second largest eigenvalue of the generalized distance matrix of graphs, in terms of various graph parameters. The graphs attaining the corresponding bounds are characterized. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a connected graph due to Aouchiche and Hansen [6]. We also show that the star graph Sn has the smallest second largest generalized distance eigenvalue among all trees of order n. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a tree due to Aouchiche and Hansen [10].</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.05.028</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Distance signless Laplacian matrix ; Eigenvalues ; Generalized distance matrix (spectrum) ; Graphs ; Linear algebra ; Lower bounds ; Mathematical analysis ; Matrix methods ; Second largest eigenvalue ; Spectra ; Transmission regular graph ; Trees (mathematics)</subject><ispartof>Linear algebra and its applications, 2020-10, Vol.603, p.226-241</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e0eb0bb6ad644e1139c489e6ccdec41b28b1f83ee9c66ea93571780d0c5b365a3</citedby><cites>FETCH-LOGICAL-c325t-e0eb0bb6ad644e1139c489e6ccdec41b28b1f83ee9c66ea93571780d0c5b365a3</cites><orcidid>0000-0002-2226-7828 ; 0000-0002-9069-9243 ; 0000-0001-6167-607X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.05.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Alhevaz, Abdollah</creatorcontrib><creatorcontrib>Baghipur, Maryam</creatorcontrib><creatorcontrib>Ganie, Hilal Ahmad</creatorcontrib><title>On the second largest eigenvalue of the generalized distance matrix of graphs</title><title>Linear algebra and its applications</title><description>For a simple connected graph G, let D(G), Tr(G), DL(G) and DQ(G), respectively be the distance matrix, the diagonal matrix of the vertex transmissions, distance Laplacian matrix and the distance signless Laplacian matrix of a graph G. The generalized distance matrix Dα(G) is a convex linear combinations of Tr(G) and D(G) and defined as Dα(G)=αTr(G)+(1−α)D(G), 0≤α≤1. As D0(G)=D(G), 2D12(G)=DQ(G), D1(G)=Tr(G) and Dα(G)−Dβ(G)=(α−β)DL(G), this matrix reduces to merging the distance spectral, distance Laplacian spectral and distance signless Laplacian spectral theories. In this paper, we take effort to obtain some upper and lower bounds for the second largest eigenvalue of the generalized distance matrix of graphs, in terms of various graph parameters. The graphs attaining the corresponding bounds are characterized. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a connected graph due to Aouchiche and Hansen [6]. We also show that the star graph Sn has the smallest second largest generalized distance eigenvalue among all trees of order n. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a tree due to Aouchiche and Hansen [10].</description><subject>Distance signless Laplacian matrix</subject><subject>Eigenvalues</subject><subject>Generalized distance matrix (spectrum)</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Second largest eigenvalue</subject><subject>Spectra</subject><subject>Transmission regular graph</subject><subject>Trees (mathematics)</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANwicU5Y27HjiBOq-JOKeoGz5dib1lWaFDutgKfHpZw5rVaa2Z35CLmmUFCg8nZddMYUDBgUIApg6oRMqKp4TpWQp2QCwMqcV7U4JxcxrgGgrIBNyOuiz8YVZhHt0LusM2GJcczQL7Hfm26H2dD-CtKOwXT-G13mfBxNbzHbmDH4z4NkGcx2FS_JWWu6iFd_c0reHx_eZs_5fPH0Mruf55YzMeYI2EDTSONkWSKlvLalqlFa69CWtGGqoa3iiLWVEk3NRUUrBQ6saLgUhk_JzfHuNgwfuxRYr4dd6NNLzUohVZWKiqSiR5UNQ4wBW70NfmPCl6agD9T0Widq-kBNg9CJWvLcHT2Y4u89Bh2tx9TV-YB21G7w_7h_AMVLdQ8</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Alhevaz, Abdollah</creator><creator>Baghipur, Maryam</creator><creator>Ganie, Hilal Ahmad</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2226-7828</orcidid><orcidid>https://orcid.org/0000-0002-9069-9243</orcidid><orcidid>https://orcid.org/0000-0001-6167-607X</orcidid></search><sort><creationdate>20201015</creationdate><title>On the second largest eigenvalue of the generalized distance matrix of graphs</title><author>Alhevaz, Abdollah ; Baghipur, Maryam ; Ganie, Hilal Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e0eb0bb6ad644e1139c489e6ccdec41b28b1f83ee9c66ea93571780d0c5b365a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distance signless Laplacian matrix</topic><topic>Eigenvalues</topic><topic>Generalized distance matrix (spectrum)</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Second largest eigenvalue</topic><topic>Spectra</topic><topic>Transmission regular graph</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhevaz, Abdollah</creatorcontrib><creatorcontrib>Baghipur, Maryam</creatorcontrib><creatorcontrib>Ganie, Hilal Ahmad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhevaz, Abdollah</au><au>Baghipur, Maryam</au><au>Ganie, Hilal Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the second largest eigenvalue of the generalized distance matrix of graphs</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>603</volume><spage>226</spage><epage>241</epage><pages>226-241</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>For a simple connected graph G, let D(G), Tr(G), DL(G) and DQ(G), respectively be the distance matrix, the diagonal matrix of the vertex transmissions, distance Laplacian matrix and the distance signless Laplacian matrix of a graph G. The generalized distance matrix Dα(G) is a convex linear combinations of Tr(G) and D(G) and defined as Dα(G)=αTr(G)+(1−α)D(G), 0≤α≤1. As D0(G)=D(G), 2D12(G)=DQ(G), D1(G)=Tr(G) and Dα(G)−Dβ(G)=(α−β)DL(G), this matrix reduces to merging the distance spectral, distance Laplacian spectral and distance signless Laplacian spectral theories. In this paper, we take effort to obtain some upper and lower bounds for the second largest eigenvalue of the generalized distance matrix of graphs, in terms of various graph parameters. The graphs attaining the corresponding bounds are characterized. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a connected graph due to Aouchiche and Hansen [6]. We also show that the star graph Sn has the smallest second largest generalized distance eigenvalue among all trees of order n. As application, we give a confirmation to a conjecture about the second largest distance signless Laplacian eigenvalue of a tree due to Aouchiche and Hansen [10].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.05.028</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2226-7828</orcidid><orcidid>https://orcid.org/0000-0002-9069-9243</orcidid><orcidid>https://orcid.org/0000-0001-6167-607X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2020-10, Vol.603, p.226-241 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2456877955 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Distance signless Laplacian matrix Eigenvalues Generalized distance matrix (spectrum) Graphs Linear algebra Lower bounds Mathematical analysis Matrix methods Second largest eigenvalue Spectra Transmission regular graph Trees (mathematics) |
title | On the second largest eigenvalue of the generalized distance matrix of graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20second%20largest%20eigenvalue%20of%20the%20generalized%20distance%20matrix%20of%20graphs&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Alhevaz,%20Abdollah&rft.date=2020-10-15&rft.volume=603&rft.spage=226&rft.epage=241&rft.pages=226-241&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.05.028&rft_dat=%3Cproquest_cross%3E2456877955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456877955&rft_id=info:pmid/&rft_els_id=S0024379520302664&rfr_iscdi=true |