Machine Learning for Experimental Design: Methods for Improved Blocking

Restricting randomization in the design of experiments (e.g., using blocking/stratification, pair-wise matching, or rerandomization) can improve the treatment-control balance on important covariates and therefore improve the estimation of the treatment effect, particularly for small- and medium-size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Quistorff, Brian, Johnson, Gentry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Quistorff, Brian
Johnson, Gentry
description Restricting randomization in the design of experiments (e.g., using blocking/stratification, pair-wise matching, or rerandomization) can improve the treatment-control balance on important covariates and therefore improve the estimation of the treatment effect, particularly for small- and medium-sized experiments. Existing guidance on how to identify these variables and implement the restrictions is incomplete and conflicting. We identify that differences are mainly due to the fact that what is important in the pre-treatment data may not translate to the post-treatment data. We highlight settings where there is sufficient data to provide clear guidance and outline improved methods to mostly automate the process using modern machine learning (ML) techniques. We show in simulations using real-world data, that these methods reduce both the mean squared error of the estimate (14%-34%) and the size of the standard error (6%-16%).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2456668272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456668272</sourcerecordid><originalsourceid>FETCH-proquest_journals_24566682723</originalsourceid><addsrcrecordid>eNqNy80KgkAYheEhCJLyHgZaC_aNjtKysh_InXsZ9FPHdMZmNLr8JLqAVmfxPmdBHGBs58UBwIq41ra-7wOPIAyZQy6pKBqpkN5RGCVVTSttaPIe0Mge1Sg6ekIra7WnKY6NLu0X3PrB6BeW9NDp4jHfNmRZic6i-9s12Z6T7Hj1Zvec0I55qyej5pRDEHLOY4iA_ac-14E7ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456668272</pqid></control><display><type>article</type><title>Machine Learning for Experimental Design: Methods for Improved Blocking</title><source>Free E- Journals</source><creator>Quistorff, Brian ; Johnson, Gentry</creator><creatorcontrib>Quistorff, Brian ; Johnson, Gentry</creatorcontrib><description>Restricting randomization in the design of experiments (e.g., using blocking/stratification, pair-wise matching, or rerandomization) can improve the treatment-control balance on important covariates and therefore improve the estimation of the treatment effect, particularly for small- and medium-sized experiments. Existing guidance on how to identify these variables and implement the restrictions is incomplete and conflicting. We identify that differences are mainly due to the fact that what is important in the pre-treatment data may not translate to the post-treatment data. We highlight settings where there is sufficient data to provide clear guidance and outline improved methods to mostly automate the process using modern machine learning (ML) techniques. We show in simulations using real-world data, that these methods reduce both the mean squared error of the estimate (14%-34%) and the size of the standard error (6%-16%).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Design of experiments ; Machine learning ; Pretreatment ; Standard error</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Quistorff, Brian</creatorcontrib><creatorcontrib>Johnson, Gentry</creatorcontrib><title>Machine Learning for Experimental Design: Methods for Improved Blocking</title><title>arXiv.org</title><description>Restricting randomization in the design of experiments (e.g., using blocking/stratification, pair-wise matching, or rerandomization) can improve the treatment-control balance on important covariates and therefore improve the estimation of the treatment effect, particularly for small- and medium-sized experiments. Existing guidance on how to identify these variables and implement the restrictions is incomplete and conflicting. We identify that differences are mainly due to the fact that what is important in the pre-treatment data may not translate to the post-treatment data. We highlight settings where there is sufficient data to provide clear guidance and outline improved methods to mostly automate the process using modern machine learning (ML) techniques. We show in simulations using real-world data, that these methods reduce both the mean squared error of the estimate (14%-34%) and the size of the standard error (6%-16%).</description><subject>Design of experiments</subject><subject>Machine learning</subject><subject>Pretreatment</subject><subject>Standard error</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy80KgkAYheEhCJLyHgZaC_aNjtKysh_InXsZ9FPHdMZmNLr8JLqAVmfxPmdBHGBs58UBwIq41ra-7wOPIAyZQy6pKBqpkN5RGCVVTSttaPIe0Mge1Sg6ekIra7WnKY6NLu0X3PrB6BeW9NDp4jHfNmRZic6i-9s12Z6T7Hj1Zvec0I55qyej5pRDEHLOY4iA_ac-14E7ZA</recordid><startdate>20201029</startdate><enddate>20201029</enddate><creator>Quistorff, Brian</creator><creator>Johnson, Gentry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201029</creationdate><title>Machine Learning for Experimental Design: Methods for Improved Blocking</title><author>Quistorff, Brian ; Johnson, Gentry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24566682723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Design of experiments</topic><topic>Machine learning</topic><topic>Pretreatment</topic><topic>Standard error</topic><toplevel>online_resources</toplevel><creatorcontrib>Quistorff, Brian</creatorcontrib><creatorcontrib>Johnson, Gentry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quistorff, Brian</au><au>Johnson, Gentry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Machine Learning for Experimental Design: Methods for Improved Blocking</atitle><jtitle>arXiv.org</jtitle><date>2020-10-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Restricting randomization in the design of experiments (e.g., using blocking/stratification, pair-wise matching, or rerandomization) can improve the treatment-control balance on important covariates and therefore improve the estimation of the treatment effect, particularly for small- and medium-sized experiments. Existing guidance on how to identify these variables and implement the restrictions is incomplete and conflicting. We identify that differences are mainly due to the fact that what is important in the pre-treatment data may not translate to the post-treatment data. We highlight settings where there is sufficient data to provide clear guidance and outline improved methods to mostly automate the process using modern machine learning (ML) techniques. We show in simulations using real-world data, that these methods reduce both the mean squared error of the estimate (14%-34%) and the size of the standard error (6%-16%).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2456668272
source Free E- Journals
subjects Design of experiments
Machine learning
Pretreatment
Standard error
title Machine Learning for Experimental Design: Methods for Improved Blocking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Machine%20Learning%20for%20Experimental%20Design:%20Methods%20for%20Improved%20Blocking&rft.jtitle=arXiv.org&rft.au=Quistorff,%20Brian&rft.date=2020-10-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2456668272%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456668272&rft_id=info:pmid/&rfr_iscdi=true