Data Informativity: A New Perspective on Data-Driven Analysis and Control

The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2020-11, Vol.65 (11), p.4753-4768
Hauptverfasser: van Waarde, Henk J., Eising, Jaap, Trentelman, Harry L., Camlibel, M. Kanat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4768
container_issue 11
container_start_page 4753
container_title IEEE transactions on automatic control
container_volume 65
creator van Waarde, Henk J.
Eising, Jaap
Trentelman, Harry L.
Camlibel, M. Kanat
description The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification.
doi_str_mv 10.1109/TAC.2020.2966717
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2456530332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8960476</ieee_id><sourcerecordid>2456530332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD_ugpeA562TbJJNvC1bPwpFPdRzyGZnYUu7W5Ot0n9vSoun4R2edxgeQu4YTBkD87gsqykHDlNulCpYcUYmTEqdccnzczIBYDozXKtLchXjKkUlBJuQ-cyNjs77dggbN3Y_3bh_oiV9x1_6iSFu0acl0qGnBzCbhZR6WvZuvY9dpK5vaDX0YxjWN-SideuIt6d5Tb5enpfVW7b4eJ1X5SLzuTFjVje1wqZufdEYJoUED0XhXYGC12hc3XgNXgE2ptWKC-a0B408l9x43yiZX5OH491tGL53GEe7GnYhPRQtFzIBkOc8UXCkfBhiDNjabeg2LuwtA3sQZpMwexBmT8JS5f5Y6RDxH9dGgShU_gevY2ZW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456530332</pqid></control><display><type>article</type><title>Data Informativity: A New Perspective on Data-Driven Analysis and Control</title><source>IEEE Electronic Library (IEL)</source><creator>van Waarde, Henk J. ; Eising, Jaap ; Trentelman, Harry L. ; Camlibel, M. Kanat</creator><creatorcontrib>van Waarde, Henk J. ; Eising, Jaap ; Trentelman, Harry L. ; Camlibel, M. Kanat</creatorcontrib><description>The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2020.2966717</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control design ; Control systems ; Control theory ; Data analysis ; Data models ; Data-driven control ; Excitation ; linear systems ; optimal control ; Predictive models ; Stability analysis ; State feedback ; System identification ; Systems theory ; Trajectory ; Tuning ; Uniqueness</subject><ispartof>IEEE transactions on automatic control, 2020-11, Vol.65 (11), p.4753-4768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</citedby><cites>FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</cites><orcidid>0000-0001-9463-8651 ; 0000-0003-2155-8196 ; 0000-0002-2407-8166 ; 0000-0002-2561-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8960476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8960476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Eising, Jaap</creatorcontrib><creatorcontrib>Trentelman, Harry L.</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><title>Data Informativity: A New Perspective on Data-Driven Analysis and Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification.</description><subject>Control design</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data-driven control</subject><subject>Excitation</subject><subject>linear systems</subject><subject>optimal control</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>System identification</subject><subject>Systems theory</subject><subject>Trajectory</subject><subject>Tuning</subject><subject>Uniqueness</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWD_ugpeA562TbJJNvC1bPwpFPdRzyGZnYUu7W5Ot0n9vSoun4R2edxgeQu4YTBkD87gsqykHDlNulCpYcUYmTEqdccnzczIBYDozXKtLchXjKkUlBJuQ-cyNjs77dggbN3Y_3bh_oiV9x1_6iSFu0acl0qGnBzCbhZR6WvZuvY9dpK5vaDX0YxjWN-SideuIt6d5Tb5enpfVW7b4eJ1X5SLzuTFjVje1wqZufdEYJoUED0XhXYGC12hc3XgNXgE2ptWKC-a0B408l9x43yiZX5OH491tGL53GEe7GnYhPRQtFzIBkOc8UXCkfBhiDNjabeg2LuwtA3sQZpMwexBmT8JS5f5Y6RDxH9dGgShU_gevY2ZW</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>van Waarde, Henk J.</creator><creator>Eising, Jaap</creator><creator>Trentelman, Harry L.</creator><creator>Camlibel, M. Kanat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9463-8651</orcidid><orcidid>https://orcid.org/0000-0003-2155-8196</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid></search><sort><creationdate>20201101</creationdate><title>Data Informativity: A New Perspective on Data-Driven Analysis and Control</title><author>van Waarde, Henk J. ; Eising, Jaap ; Trentelman, Harry L. ; Camlibel, M. Kanat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control design</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data-driven control</topic><topic>Excitation</topic><topic>linear systems</topic><topic>optimal control</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>System identification</topic><topic>Systems theory</topic><topic>Trajectory</topic><topic>Tuning</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Eising, Jaap</creatorcontrib><creatorcontrib>Trentelman, Harry L.</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Waarde, Henk J.</au><au>Eising, Jaap</au><au>Trentelman, Harry L.</au><au>Camlibel, M. Kanat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Informativity: A New Perspective on Data-Driven Analysis and Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>65</volume><issue>11</issue><spage>4753</spage><epage>4768</epage><pages>4753-4768</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2020.2966717</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9463-8651</orcidid><orcidid>https://orcid.org/0000-0003-2155-8196</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2020-11, Vol.65 (11), p.4753-4768
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2456530332
source IEEE Electronic Library (IEL)
subjects Control design
Control systems
Control theory
Data analysis
Data models
Data-driven control
Excitation
linear systems
optimal control
Predictive models
Stability analysis
State feedback
System identification
Systems theory
Trajectory
Tuning
Uniqueness
title Data Informativity: A New Perspective on Data-Driven Analysis and Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Informativity:%20A%20New%20Perspective%20on%20Data-Driven%20Analysis%20and%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=van%20Waarde,%20Henk%20J.&rft.date=2020-11-01&rft.volume=65&rft.issue=11&rft.spage=4753&rft.epage=4768&rft.pages=4753-4768&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2020.2966717&rft_dat=%3Cproquest_RIE%3E2456530332%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456530332&rft_id=info:pmid/&rft_ieee_id=8960476&rfr_iscdi=true