Data Informativity: A New Perspective on Data-Driven Analysis and Control
The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that als...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2020-11, Vol.65 (11), p.4753-4768 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4768 |
---|---|
container_issue | 11 |
container_start_page | 4753 |
container_title | IEEE transactions on automatic control |
container_volume | 65 |
creator | van Waarde, Henk J. Eising, Jaap Trentelman, Harry L. Camlibel, M. Kanat |
description | The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification. |
doi_str_mv | 10.1109/TAC.2020.2966717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2456530332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8960476</ieee_id><sourcerecordid>2456530332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD_ugpeA562TbJJNvC1bPwpFPdRzyGZnYUu7W5Ot0n9vSoun4R2edxgeQu4YTBkD87gsqykHDlNulCpYcUYmTEqdccnzczIBYDozXKtLchXjKkUlBJuQ-cyNjs77dggbN3Y_3bh_oiV9x1_6iSFu0acl0qGnBzCbhZR6WvZuvY9dpK5vaDX0YxjWN-SideuIt6d5Tb5enpfVW7b4eJ1X5SLzuTFjVje1wqZufdEYJoUED0XhXYGC12hc3XgNXgE2ptWKC-a0B408l9x43yiZX5OH491tGL53GEe7GnYhPRQtFzIBkOc8UXCkfBhiDNjabeg2LuwtA3sQZpMwexBmT8JS5f5Y6RDxH9dGgShU_gevY2ZW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456530332</pqid></control><display><type>article</type><title>Data Informativity: A New Perspective on Data-Driven Analysis and Control</title><source>IEEE Electronic Library (IEL)</source><creator>van Waarde, Henk J. ; Eising, Jaap ; Trentelman, Harry L. ; Camlibel, M. Kanat</creator><creatorcontrib>van Waarde, Henk J. ; Eising, Jaap ; Trentelman, Harry L. ; Camlibel, M. Kanat</creatorcontrib><description>The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2020.2966717</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control design ; Control systems ; Control theory ; Data analysis ; Data models ; Data-driven control ; Excitation ; linear systems ; optimal control ; Predictive models ; Stability analysis ; State feedback ; System identification ; Systems theory ; Trajectory ; Tuning ; Uniqueness</subject><ispartof>IEEE transactions on automatic control, 2020-11, Vol.65 (11), p.4753-4768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</citedby><cites>FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</cites><orcidid>0000-0001-9463-8651 ; 0000-0003-2155-8196 ; 0000-0002-2407-8166 ; 0000-0002-2561-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8960476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8960476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Eising, Jaap</creatorcontrib><creatorcontrib>Trentelman, Harry L.</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><title>Data Informativity: A New Perspective on Data-Driven Analysis and Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification.</description><subject>Control design</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data-driven control</subject><subject>Excitation</subject><subject>linear systems</subject><subject>optimal control</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>System identification</subject><subject>Systems theory</subject><subject>Trajectory</subject><subject>Tuning</subject><subject>Uniqueness</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWD_ugpeA562TbJJNvC1bPwpFPdRzyGZnYUu7W5Ot0n9vSoun4R2edxgeQu4YTBkD87gsqykHDlNulCpYcUYmTEqdccnzczIBYDozXKtLchXjKkUlBJuQ-cyNjs77dggbN3Y_3bh_oiV9x1_6iSFu0acl0qGnBzCbhZR6WvZuvY9dpK5vaDX0YxjWN-SideuIt6d5Tb5enpfVW7b4eJ1X5SLzuTFjVje1wqZufdEYJoUED0XhXYGC12hc3XgNXgE2ptWKC-a0B408l9x43yiZX5OH491tGL53GEe7GnYhPRQtFzIBkOc8UXCkfBhiDNjabeg2LuwtA3sQZpMwexBmT8JS5f5Y6RDxH9dGgShU_gevY2ZW</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>van Waarde, Henk J.</creator><creator>Eising, Jaap</creator><creator>Trentelman, Harry L.</creator><creator>Camlibel, M. Kanat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9463-8651</orcidid><orcidid>https://orcid.org/0000-0003-2155-8196</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid></search><sort><creationdate>20201101</creationdate><title>Data Informativity: A New Perspective on Data-Driven Analysis and Control</title><author>van Waarde, Henk J. ; Eising, Jaap ; Trentelman, Harry L. ; Camlibel, M. Kanat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bdb6edbfc7d915450c077ca7e42be9abdc80c60ed9f86241a8c08e23529ccd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control design</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data-driven control</topic><topic>Excitation</topic><topic>linear systems</topic><topic>optimal control</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>System identification</topic><topic>Systems theory</topic><topic>Trajectory</topic><topic>Tuning</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Eising, Jaap</creatorcontrib><creatorcontrib>Trentelman, Harry L.</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Waarde, Henk J.</au><au>Eising, Jaap</au><au>Trentelman, Harry L.</au><au>Camlibel, M. Kanat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Informativity: A New Perspective on Data-Driven Analysis and Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>65</volume><issue>11</issue><spage>4753</spage><epage>4768</epage><pages>4753-4768</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system-theoretic properties and to construct control laws, without using a system model. Persistency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this article, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases, data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data, as data-driven control is possible only with data that are informative for system identification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2020.2966717</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9463-8651</orcidid><orcidid>https://orcid.org/0000-0003-2155-8196</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2020-11, Vol.65 (11), p.4753-4768 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2456530332 |
source | IEEE Electronic Library (IEL) |
subjects | Control design Control systems Control theory Data analysis Data models Data-driven control Excitation linear systems optimal control Predictive models Stability analysis State feedback System identification Systems theory Trajectory Tuning Uniqueness |
title | Data Informativity: A New Perspective on Data-Driven Analysis and Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Informativity:%20A%20New%20Perspective%20on%20Data-Driven%20Analysis%20and%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=van%20Waarde,%20Henk%20J.&rft.date=2020-11-01&rft.volume=65&rft.issue=11&rft.spage=4753&rft.epage=4768&rft.pages=4753-4768&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2020.2966717&rft_dat=%3Cproquest_RIE%3E2456530332%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456530332&rft_id=info:pmid/&rft_ieee_id=8960476&rfr_iscdi=true |