Gaussian Process Model of Surrounding Rock Classification Based on Digital Characterization of Rock Mass Structure and Its Application

As the important data basis of surrounding rock classification, rock mass structural information obtained by traditional image processing and feature extraction algorithms could not be quantitatively analyzed because of the uncertainty and geometric randomness of structural planes. In this paper, ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-15
Hauptverfasser: Li, Weiteng, Wang, Gang, Sun, Shang-qu, He, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Li, Weiteng
Wang, Gang
Sun, Shang-qu
He, Peng
description As the important data basis of surrounding rock classification, rock mass structural information obtained by traditional image processing and feature extraction algorithms could not be quantitatively analyzed because of the uncertainty and geometric randomness of structural planes. In this paper, based on straight line detection, intelligent scissors, and morphological edge detection algorithms, the multiple interpretation system of rock mass image including linear bunching extraction, magnetic tracking extraction, and multiparameter characterization was researched and developed, and the actual distribution information and the related probability distribution model of structural planes could be obtained directly. On the basis of this, plenty of corresponding random rating-values meeting the probability distribution models of these evaluation indices were gained by Monte Carlo Simulation. The distribution probability affiliated with different rock mass grade was attained by inductive statistics, and the robust evaluation of surrounding rock classification could be carried out. Taking the robust results as learning samples, the response model of surrounding rock grade based on Gaussian process classification was established, making the evaluation of surrounding rock subclassification more rapid and robust.
doi_str_mv 10.1155/2020/5264072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2456404887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456404887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-ddf5339d5ebcd3356a32e46cd9c0fda1c80645b75fc2a1faec10fbd8d9a4653e3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqzbMseNTY_cgm6bFGrYWKYhW8hel-tFtjtu4miP4Af7dbU_DoaebwzDvwRtExwReEcD6gmOIBp2mCM7oT9QhPWcxJku2GHdMkJpS97EcH3q8wpoSTvBd9j6H13kCNHpwVynt0Z6WqkNVo1jpn21qaeoEerXhFRQWBaiOgMbZGl-CVRGG5MgvTQIWKJTgQjXLmqxMh5PfwLtyhWeNa0bROIaglmjQejdbraht2GO1pqLw62s5-9Hxz_VTcxtP78aQYTWPBUtzEUmrO2FByNReSMZ4CoypJhRwKrCUQkeM04fOMa0GBaFCCYD2XuRxCknKmWD867XLXzr63yjflyrauDi9LmvBQXJLnWVDnnRLOeu-ULtfOvIH7LAkuN02Xm6bLbdOBn3V8aWoJH-Y_fdJpFYzS8KfJkGdZxn4Ar16J-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456404887</pqid></control><display><type>article</type><title>Gaussian Process Model of Surrounding Rock Classification Based on Digital Characterization of Rock Mass Structure and Its Application</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Weiteng ; Wang, Gang ; Sun, Shang-qu ; He, Peng</creator><contributor>Constantoudis, Vassilios</contributor><creatorcontrib>Li, Weiteng ; Wang, Gang ; Sun, Shang-qu ; He, Peng ; Constantoudis, Vassilios</creatorcontrib><description>As the important data basis of surrounding rock classification, rock mass structural information obtained by traditional image processing and feature extraction algorithms could not be quantitatively analyzed because of the uncertainty and geometric randomness of structural planes. In this paper, based on straight line detection, intelligent scissors, and morphological edge detection algorithms, the multiple interpretation system of rock mass image including linear bunching extraction, magnetic tracking extraction, and multiparameter characterization was researched and developed, and the actual distribution information and the related probability distribution model of structural planes could be obtained directly. On the basis of this, plenty of corresponding random rating-values meeting the probability distribution models of these evaluation indices were gained by Monte Carlo Simulation. The distribution probability affiliated with different rock mass grade was attained by inductive statistics, and the robust evaluation of surrounding rock classification could be carried out. Taking the robust results as learning samples, the response model of surrounding rock grade based on Gaussian process classification was established, making the evaluation of surrounding rock subclassification more rapid and robust.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/5264072</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Classification ; Cracks ; Cutting tools ; Edge detection ; Evaluation ; Feature extraction ; Gaussian process ; Geology ; Image classification ; Image processing ; Methods ; Monte Carlo simulation ; Morphology ; Planes ; Probability distribution ; Robustness ; Rock masses ; Statistical methods ; Structural analysis</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15</ispartof><rights>Copyright © 2020 Peng He et al.</rights><rights>Copyright © 2020 Peng He et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-ddf5339d5ebcd3356a32e46cd9c0fda1c80645b75fc2a1faec10fbd8d9a4653e3</citedby><cites>FETCH-LOGICAL-c360t-ddf5339d5ebcd3356a32e46cd9c0fda1c80645b75fc2a1faec10fbd8d9a4653e3</cites><orcidid>0000-0002-0476-6113 ; 0000-0001-7187-0618 ; 0000-0002-3099-5913 ; 0000-0002-3833-8846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Constantoudis, Vassilios</contributor><creatorcontrib>Li, Weiteng</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Sun, Shang-qu</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><title>Gaussian Process Model of Surrounding Rock Classification Based on Digital Characterization of Rock Mass Structure and Its Application</title><title>Mathematical problems in engineering</title><description>As the important data basis of surrounding rock classification, rock mass structural information obtained by traditional image processing and feature extraction algorithms could not be quantitatively analyzed because of the uncertainty and geometric randomness of structural planes. In this paper, based on straight line detection, intelligent scissors, and morphological edge detection algorithms, the multiple interpretation system of rock mass image including linear bunching extraction, magnetic tracking extraction, and multiparameter characterization was researched and developed, and the actual distribution information and the related probability distribution model of structural planes could be obtained directly. On the basis of this, plenty of corresponding random rating-values meeting the probability distribution models of these evaluation indices were gained by Monte Carlo Simulation. The distribution probability affiliated with different rock mass grade was attained by inductive statistics, and the robust evaluation of surrounding rock classification could be carried out. Taking the robust results as learning samples, the response model of surrounding rock grade based on Gaussian process classification was established, making the evaluation of surrounding rock subclassification more rapid and robust.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cracks</subject><subject>Cutting tools</subject><subject>Edge detection</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Gaussian process</subject><subject>Geology</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Planes</subject><subject>Probability distribution</subject><subject>Robustness</subject><subject>Rock masses</subject><subject>Statistical methods</subject><subject>Structural analysis</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqzbMseNTY_cgm6bFGrYWKYhW8hel-tFtjtu4miP4Af7dbU_DoaebwzDvwRtExwReEcD6gmOIBp2mCM7oT9QhPWcxJku2GHdMkJpS97EcH3q8wpoSTvBd9j6H13kCNHpwVynt0Z6WqkNVo1jpn21qaeoEerXhFRQWBaiOgMbZGl-CVRGG5MgvTQIWKJTgQjXLmqxMh5PfwLtyhWeNa0bROIaglmjQejdbraht2GO1pqLw62s5-9Hxz_VTcxtP78aQYTWPBUtzEUmrO2FByNReSMZ4CoypJhRwKrCUQkeM04fOMa0GBaFCCYD2XuRxCknKmWD867XLXzr63yjflyrauDi9LmvBQXJLnWVDnnRLOeu-ULtfOvIH7LAkuN02Xm6bLbdOBn3V8aWoJH-Y_fdJpFYzS8KfJkGdZxn4Ar16J-w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Weiteng</creator><creator>Wang, Gang</creator><creator>Sun, Shang-qu</creator><creator>He, Peng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0476-6113</orcidid><orcidid>https://orcid.org/0000-0001-7187-0618</orcidid><orcidid>https://orcid.org/0000-0002-3099-5913</orcidid><orcidid>https://orcid.org/0000-0002-3833-8846</orcidid></search><sort><creationdate>2020</creationdate><title>Gaussian Process Model of Surrounding Rock Classification Based on Digital Characterization of Rock Mass Structure and Its Application</title><author>Li, Weiteng ; Wang, Gang ; Sun, Shang-qu ; He, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-ddf5339d5ebcd3356a32e46cd9c0fda1c80645b75fc2a1faec10fbd8d9a4653e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cracks</topic><topic>Cutting tools</topic><topic>Edge detection</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Gaussian process</topic><topic>Geology</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Planes</topic><topic>Probability distribution</topic><topic>Robustness</topic><topic>Rock masses</topic><topic>Statistical methods</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weiteng</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Sun, Shang-qu</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weiteng</au><au>Wang, Gang</au><au>Sun, Shang-qu</au><au>He, Peng</au><au>Constantoudis, Vassilios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Process Model of Surrounding Rock Classification Based on Digital Characterization of Rock Mass Structure and Its Application</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>As the important data basis of surrounding rock classification, rock mass structural information obtained by traditional image processing and feature extraction algorithms could not be quantitatively analyzed because of the uncertainty and geometric randomness of structural planes. In this paper, based on straight line detection, intelligent scissors, and morphological edge detection algorithms, the multiple interpretation system of rock mass image including linear bunching extraction, magnetic tracking extraction, and multiparameter characterization was researched and developed, and the actual distribution information and the related probability distribution model of structural planes could be obtained directly. On the basis of this, plenty of corresponding random rating-values meeting the probability distribution models of these evaluation indices were gained by Monte Carlo Simulation. The distribution probability affiliated with different rock mass grade was attained by inductive statistics, and the robust evaluation of surrounding rock classification could be carried out. Taking the robust results as learning samples, the response model of surrounding rock grade based on Gaussian process classification was established, making the evaluation of surrounding rock subclassification more rapid and robust.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5264072</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0476-6113</orcidid><orcidid>https://orcid.org/0000-0001-7187-0618</orcidid><orcidid>https://orcid.org/0000-0002-3099-5913</orcidid><orcidid>https://orcid.org/0000-0002-3833-8846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2456404887
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Classification
Cracks
Cutting tools
Edge detection
Evaluation
Feature extraction
Gaussian process
Geology
Image classification
Image processing
Methods
Monte Carlo simulation
Morphology
Planes
Probability distribution
Robustness
Rock masses
Statistical methods
Structural analysis
title Gaussian Process Model of Surrounding Rock Classification Based on Digital Characterization of Rock Mass Structure and Its Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Process%20Model%20of%20Surrounding%20Rock%20Classification%20Based%20on%20Digital%20Characterization%20of%20Rock%20Mass%20Structure%20and%20Its%20Application&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Li,%20Weiteng&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/5264072&rft_dat=%3Cproquest_cross%3E2456404887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456404887&rft_id=info:pmid/&rfr_iscdi=true