Learning Centric Wireless Resource Allocation for Edge Computing: Algorithm and Experiment
Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications, where a fundamental communication question is: how to allocate the limited wireless resources (such as time, energy) to the simultan...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhou, Liangkai Hong, Yuncong Wang, Shuai Han, Ruihua Li, Dachuan Wang, Rui Qi Hao |
description | Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications, where a fundamental communication question is: how to allocate the limited wireless resources (such as time, energy) to the simultaneous model training of heterogeneous learning tasks? Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment. As a result, they could lead to low learning performance in practice. This paper proposes the learning centric wireless resource allocation (LCWRA) scheme that maximizes the worst learning performance of multiple classification tasks. Analysis shows that the optimal transmission time has an inverse power relationship with respect to the classification error. Finally, both simulation and experimental results are provided to verify the performance of the proposed LCWRA scheme and its robustness in real implementation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2456034336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456034336</sourcerecordid><originalsourceid>FETCH-proquest_journals_24560343363</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMgWLT_8MC5UJO2ipuUioOTCIJLCe1rTUmT-pKCn28GP8DpDuees2ARF2KXHDLOVyx2bkjTlBd7nuciYs8rSjLK9FCi8aQaeChCjc7BDZ2dqUE4aW0b6ZU10FmCqu0RSjtOsw_eMeDekvKvEaRpofpMSGoMsQ1bdlI7jH-7ZttzdS8vyUT2PaPz9RD6JqCaZ3mRikyIQvz3-gIr3EKi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456034336</pqid></control><display><type>article</type><title>Learning Centric Wireless Resource Allocation for Edge Computing: Algorithm and Experiment</title><source>Free E- Journals</source><creator>Zhou, Liangkai ; Hong, Yuncong ; Wang, Shuai ; Han, Ruihua ; Li, Dachuan ; Wang, Rui ; Qi Hao</creator><creatorcontrib>Zhou, Liangkai ; Hong, Yuncong ; Wang, Shuai ; Han, Ruihua ; Li, Dachuan ; Wang, Rui ; Qi Hao</creatorcontrib><description>Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications, where a fundamental communication question is: how to allocate the limited wireless resources (such as time, energy) to the simultaneous model training of heterogeneous learning tasks? Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment. As a result, they could lead to low learning performance in practice. This paper proposes the learning centric wireless resource allocation (LCWRA) scheme that maximizes the worst learning performance of multiple classification tasks. Analysis shows that the optimal transmission time has an inverse power relationship with respect to the classification error. Finally, both simulation and experimental results are provided to verify the performance of the proposed LCWRA scheme and its robustness in real implementation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classification ; Cognitive tasks ; Computer architecture ; Edge computing ; Machine learning ; Resource allocation ; Training</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhou, Liangkai</creatorcontrib><creatorcontrib>Hong, Yuncong</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Han, Ruihua</creatorcontrib><creatorcontrib>Li, Dachuan</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Qi Hao</creatorcontrib><title>Learning Centric Wireless Resource Allocation for Edge Computing: Algorithm and Experiment</title><title>arXiv.org</title><description>Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications, where a fundamental communication question is: how to allocate the limited wireless resources (such as time, energy) to the simultaneous model training of heterogeneous learning tasks? Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment. As a result, they could lead to low learning performance in practice. This paper proposes the learning centric wireless resource allocation (LCWRA) scheme that maximizes the worst learning performance of multiple classification tasks. Analysis shows that the optimal transmission time has an inverse power relationship with respect to the classification error. Finally, both simulation and experimental results are provided to verify the performance of the proposed LCWRA scheme and its robustness in real implementation.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cognitive tasks</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>Machine learning</subject><subject>Resource allocation</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLEKwjAURYMgWLT_8MC5UJO2ipuUioOTCIJLCe1rTUmT-pKCn28GP8DpDuees2ARF2KXHDLOVyx2bkjTlBd7nuciYs8rSjLK9FCi8aQaeChCjc7BDZ2dqUE4aW0b6ZU10FmCqu0RSjtOsw_eMeDekvKvEaRpofpMSGoMsQ1bdlI7jH-7ZttzdS8vyUT2PaPz9RD6JqCaZ3mRikyIQvz3-gIr3EKi</recordid><startdate>20201029</startdate><enddate>20201029</enddate><creator>Zhou, Liangkai</creator><creator>Hong, Yuncong</creator><creator>Wang, Shuai</creator><creator>Han, Ruihua</creator><creator>Li, Dachuan</creator><creator>Wang, Rui</creator><creator>Qi Hao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201029</creationdate><title>Learning Centric Wireless Resource Allocation for Edge Computing: Algorithm and Experiment</title><author>Zhou, Liangkai ; Hong, Yuncong ; Wang, Shuai ; Han, Ruihua ; Li, Dachuan ; Wang, Rui ; Qi Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24560343363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cognitive tasks</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>Machine learning</topic><topic>Resource allocation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Liangkai</creatorcontrib><creatorcontrib>Hong, Yuncong</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Han, Ruihua</creatorcontrib><creatorcontrib>Li, Dachuan</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Qi Hao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Liangkai</au><au>Hong, Yuncong</au><au>Wang, Shuai</au><au>Han, Ruihua</au><au>Li, Dachuan</au><au>Wang, Rui</au><au>Qi Hao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Centric Wireless Resource Allocation for Edge Computing: Algorithm and Experiment</atitle><jtitle>arXiv.org</jtitle><date>2020-10-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications, where a fundamental communication question is: how to allocate the limited wireless resources (such as time, energy) to the simultaneous model training of heterogeneous learning tasks? Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment. As a result, they could lead to low learning performance in practice. This paper proposes the learning centric wireless resource allocation (LCWRA) scheme that maximizes the worst learning performance of multiple classification tasks. Analysis shows that the optimal transmission time has an inverse power relationship with respect to the classification error. Finally, both simulation and experimental results are provided to verify the performance of the proposed LCWRA scheme and its robustness in real implementation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2456034336 |
source | Free E- Journals |
subjects | Algorithms Classification Cognitive tasks Computer architecture Edge computing Machine learning Resource allocation Training |
title | Learning Centric Wireless Resource Allocation for Edge Computing: Algorithm and Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Centric%20Wireless%20Resource%20Allocation%20for%20Edge%20Computing:%20Algorithm%20and%20Experiment&rft.jtitle=arXiv.org&rft.au=Zhou,%20Liangkai&rft.date=2020-10-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2456034336%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456034336&rft_id=info:pmid/&rfr_iscdi=true |