Robust Passivity Control for 2-D Uncertain Markovian Jump Linear Discrete-Time Systems
This paper discusses the problem of robust controller design for two-dimensional (2-D) Markovian jump linear systems. The problem is demonstrated using Fornasini-Marchesini local state-space models, which are affected by uncertainties. The transition-mode probability matrix is homogenous and known....
Gespeichert in:
Veröffentlicht in: | IEEE access 2017-01, Vol.5, p.12176-12184 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12184 |
---|---|
container_issue | |
container_start_page | 12176 |
container_title | IEEE access |
container_volume | 5 |
creator | Li, Zhe Zhang, Tianfan Ma, Chen Li, Huxiong Li, Xiaozhi |
description | This paper discusses the problem of robust controller design for two-dimensional (2-D) Markovian jump linear systems. The problem is demonstrated using Fornasini-Marchesini local state-space models, which are affected by uncertainties. The transition-mode probability matrix is homogenous and known. It is assumed that the mode information is available for the controller design and implementation. Then, a mode-dependent state-feedback controller is proposed. By substituting the controller into the 2-D system, a stochastic closed-loop system is obtained, because the stochastic variable, external disturbance, and uncertainties are all included in the closed-loop system. Based on the analysis results, an approach to design the controller and its gains is proposed, and the gains are calculated by solving linear matrix inequalities. In section V, a 2-D case is used to verify the performance of the controller. |
doi_str_mv | 10.1109/ACCESS.2017.2719918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455945925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7959037</ieee_id><doaj_id>oai_doaj_org_article_45dea0526446442ba06969b7e91b56d7</doaj_id><sourcerecordid>2455945925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a34f7d0800fc0ba0f63deb9c127425f6c633f163eef70249e2a05651f739036b3</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXURBUb_Al4DPW3NP8yjrnYpi1deQ3Z1IarupSSr0742uiMPADMOcc2Y4VXVC8IQQrM_Om-ZyPp9QTNSEKqI1me5UB5RIXTPB5O6_fr86TmmBS0zLSKiD6vUptJuU0aNNyX_6vEVNGHIMS-RCRLS-QC9DBzFbP6B7G9_Dp7cDutus1mjmB7ARXfjURchQP_sVoPk2ZVilo2rP2WWC4996WL1cXT43N_Xs4fq2OZ_VHcfTXFvGnerxFGPX4dZiJ1kPre4IVZwKJzvJmCOSATiFKddALRZSEKeYxky27LC6HXn7YBdmHf3Kxq0J1pufQYhvxsbsuyUYLnooaCo5L0mLmtRStwo0aYXsVeE6HbnWMXxsIGWzCJs4lPMN5UJoLjQVZYuNW10MKUVwf6oEm28_zOiH-fbD_PpRUCcjygPAH0JpUd5Q7AvGEYSz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455945925</pqid></control><display><type>article</type><title>Robust Passivity Control for 2-D Uncertain Markovian Jump Linear Discrete-Time Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Zhe ; Zhang, Tianfan ; Ma, Chen ; Li, Huxiong ; Li, Xiaozhi</creator><creatorcontrib>Li, Zhe ; Zhang, Tianfan ; Ma, Chen ; Li, Huxiong ; Li, Xiaozhi</creatorcontrib><description>This paper discusses the problem of robust controller design for two-dimensional (2-D) Markovian jump linear systems. The problem is demonstrated using Fornasini-Marchesini local state-space models, which are affected by uncertainties. The transition-mode probability matrix is homogenous and known. It is assumed that the mode information is available for the controller design and implementation. Then, a mode-dependent state-feedback controller is proposed. By substituting the controller into the 2-D system, a stochastic closed-loop system is obtained, because the stochastic variable, external disturbance, and uncertainties are all included in the closed-loop system. Based on the analysis results, an approach to design the controller and its gains is proposed, and the gains are calculated by solving linear matrix inequalities. In section V, a 2-D case is used to verify the performance of the controller.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2719918</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Asymptotic stability ; Closed loop systems ; Control systems design ; Controllers ; Discrete time systems ; dissipation analysis ; Feedback control ; Linear matrix inequalities ; linear matrix inequality (LMI) ; Linear systems ; Markovian jump system ; Mathematical analysis ; passivity analysis ; Robust control ; Robustness ; Stability analysis ; State space models ; Two-dimensional digital system ; Uncertainty</subject><ispartof>IEEE access, 2017-01, Vol.5, p.12176-12184</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a34f7d0800fc0ba0f63deb9c127425f6c633f163eef70249e2a05651f739036b3</citedby><cites>FETCH-LOGICAL-c408t-a34f7d0800fc0ba0f63deb9c127425f6c633f163eef70249e2a05651f739036b3</cites><orcidid>0000-0003-0170-7297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7959037$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Zhang, Tianfan</creatorcontrib><creatorcontrib>Ma, Chen</creatorcontrib><creatorcontrib>Li, Huxiong</creatorcontrib><creatorcontrib>Li, Xiaozhi</creatorcontrib><title>Robust Passivity Control for 2-D Uncertain Markovian Jump Linear Discrete-Time Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper discusses the problem of robust controller design for two-dimensional (2-D) Markovian jump linear systems. The problem is demonstrated using Fornasini-Marchesini local state-space models, which are affected by uncertainties. The transition-mode probability matrix is homogenous and known. It is assumed that the mode information is available for the controller design and implementation. Then, a mode-dependent state-feedback controller is proposed. By substituting the controller into the 2-D system, a stochastic closed-loop system is obtained, because the stochastic variable, external disturbance, and uncertainties are all included in the closed-loop system. Based on the analysis results, an approach to design the controller and its gains is proposed, and the gains are calculated by solving linear matrix inequalities. In section V, a 2-D case is used to verify the performance of the controller.</description><subject>Asymptotic stability</subject><subject>Closed loop systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Discrete time systems</subject><subject>dissipation analysis</subject><subject>Feedback control</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality (LMI)</subject><subject>Linear systems</subject><subject>Markovian jump system</subject><subject>Mathematical analysis</subject><subject>passivity analysis</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>State space models</subject><subject>Two-dimensional digital system</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXURBUb_Al4DPW3NP8yjrnYpi1deQ3Z1IarupSSr0742uiMPADMOcc2Y4VXVC8IQQrM_Om-ZyPp9QTNSEKqI1me5UB5RIXTPB5O6_fr86TmmBS0zLSKiD6vUptJuU0aNNyX_6vEVNGHIMS-RCRLS-QC9DBzFbP6B7G9_Dp7cDutus1mjmB7ARXfjURchQP_sVoPk2ZVilo2rP2WWC4996WL1cXT43N_Xs4fq2OZ_VHcfTXFvGnerxFGPX4dZiJ1kPre4IVZwKJzvJmCOSATiFKddALRZSEKeYxky27LC6HXn7YBdmHf3Kxq0J1pufQYhvxsbsuyUYLnooaCo5L0mLmtRStwo0aYXsVeE6HbnWMXxsIGWzCJs4lPMN5UJoLjQVZYuNW10MKUVwf6oEm28_zOiH-fbD_PpRUCcjygPAH0JpUd5Q7AvGEYSz</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Li, Zhe</creator><creator>Zhang, Tianfan</creator><creator>Ma, Chen</creator><creator>Li, Huxiong</creator><creator>Li, Xiaozhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0170-7297</orcidid></search><sort><creationdate>20170101</creationdate><title>Robust Passivity Control for 2-D Uncertain Markovian Jump Linear Discrete-Time Systems</title><author>Li, Zhe ; Zhang, Tianfan ; Ma, Chen ; Li, Huxiong ; Li, Xiaozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a34f7d0800fc0ba0f63deb9c127425f6c633f163eef70249e2a05651f739036b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic stability</topic><topic>Closed loop systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Discrete time systems</topic><topic>dissipation analysis</topic><topic>Feedback control</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality (LMI)</topic><topic>Linear systems</topic><topic>Markovian jump system</topic><topic>Mathematical analysis</topic><topic>passivity analysis</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>State space models</topic><topic>Two-dimensional digital system</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Zhang, Tianfan</creatorcontrib><creatorcontrib>Ma, Chen</creatorcontrib><creatorcontrib>Li, Huxiong</creatorcontrib><creatorcontrib>Li, Xiaozhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhe</au><au>Zhang, Tianfan</au><au>Ma, Chen</au><au>Li, Huxiong</au><au>Li, Xiaozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Passivity Control for 2-D Uncertain Markovian Jump Linear Discrete-Time Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>12176</spage><epage>12184</epage><pages>12176-12184</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper discusses the problem of robust controller design for two-dimensional (2-D) Markovian jump linear systems. The problem is demonstrated using Fornasini-Marchesini local state-space models, which are affected by uncertainties. The transition-mode probability matrix is homogenous and known. It is assumed that the mode information is available for the controller design and implementation. Then, a mode-dependent state-feedback controller is proposed. By substituting the controller into the 2-D system, a stochastic closed-loop system is obtained, because the stochastic variable, external disturbance, and uncertainties are all included in the closed-loop system. Based on the analysis results, an approach to design the controller and its gains is proposed, and the gains are calculated by solving linear matrix inequalities. In section V, a 2-D case is used to verify the performance of the controller.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2719918</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0170-7297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2017-01, Vol.5, p.12176-12184 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455945925 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Asymptotic stability Closed loop systems Control systems design Controllers Discrete time systems dissipation analysis Feedback control Linear matrix inequalities linear matrix inequality (LMI) Linear systems Markovian jump system Mathematical analysis passivity analysis Robust control Robustness Stability analysis State space models Two-dimensional digital system Uncertainty |
title | Robust Passivity Control for 2-D Uncertain Markovian Jump Linear Discrete-Time Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Passivity%20Control%20for%202-D%20Uncertain%20Markovian%20Jump%20Linear%20Discrete-Time%20Systems&rft.jtitle=IEEE%20access&rft.au=Li,%20Zhe&rft.date=2017-01-01&rft.volume=5&rft.spage=12176&rft.epage=12184&rft.pages=12176-12184&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2719918&rft_dat=%3Cproquest_doaj_%3E2455945925%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455945925&rft_id=info:pmid/&rft_ieee_id=7959037&rft_doaj_id=oai_doaj_org_article_45dea0526446442ba06969b7e91b56d7&rfr_iscdi=true |