Scoring Users' Privacy Disclosure Across Multiple Online Social Networks
Users in online social networking sites unknowingly disclose their sensitive information that aggravate the social and financial risks. Hence, to prevent the information loss and privacy exposure, users need to find ways to quantify their privacy level based on their online social network data. Curr...
Gespeichert in:
Veröffentlicht in: | IEEE access 2017-01, Vol.5, p.13118-13130 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13130 |
---|---|
container_issue | |
container_start_page | 13118 |
container_title | IEEE access |
container_volume | 5 |
creator | Aghasian, Erfan Garg, Saurabh Longxiang Gao Shui Yu Montgomery, James |
description | Users in online social networking sites unknowingly disclose their sensitive information that aggravate the social and financial risks. Hence, to prevent the information loss and privacy exposure, users need to find ways to quantify their privacy level based on their online social network data. Current studies that focus on measuring the privacy risk and disclosure consider only a single source of data, neglecting the fact that users, in general, can have multiple social network accounts disclosing different sensitive information. In this paper, we investigate an approach that can help social media users to measure their privacy disclosure score (PDS) based on the information shared across multiple social networking sites. In particular, we identify the main factors that have impact on users privacy, namely, sensitivity and visibility, to obtain the final disclosure score for each user. By applying the statistical and fuzzy systems, we can specify the potential information loss for a user by using obtained PDS. Our evaluation results with real social media data show that our method can provide a better estimation of privacy disclosure score for users having presence in multiple online social networks. |
doi_str_mv | 10.1109/ACCESS.2017.2720187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455943788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7959160</ieee_id><doaj_id>oai_doaj_org_article_4b1881e453dc478fbba9ca9bd9e9beb3</doaj_id><sourcerecordid>2455943788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1372c001694947fae7cc2221236d6c2a4f07b66b71d96e973f478681d1a8e9703</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIVIUv4BKJA6cWb_FyrEKhSGxS4Ww5zqRyCXWxE1D_HkOqirnMonnvjeZl2QVGU4yRup6V5Xy5nBKExZSIlKQ4ykYEczWhBeXH_-rT7DzGNUoh06gQo2yxtD64zSp_ixDiVf4S3Jexu_zGRdv62AfIZzb4GPPHvu3ctoX8edO6DeRLb51p8yfovn14j2fZSWPaCOf7PM7ebuev5WLy8Hx3X84eJpYh2U0wFcQilNSZYqIxIKwlhGBCec0tMaxBouK8ErhWHJSgDROSS1xjI1OL6Di7H3hrb9Z6G9yHCTvtjdN_Ax9W2oTO2RY0q7CUGFhBa5tYmqoyyhpV1QpUBRVNXJcD1zb4zx5ip9e-D5t0viasKBSjQsq0RYetvz8EaA6qGOlfB_TggP51QO8dSKiLAeUA4IAQqlCYI_oD3muAmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455943788</pqid></control><display><type>article</type><title>Scoring Users' Privacy Disclosure Across Multiple Online Social Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aghasian, Erfan ; Garg, Saurabh ; Longxiang Gao ; Shui Yu ; Montgomery, James</creator><creatorcontrib>Aghasian, Erfan ; Garg, Saurabh ; Longxiang Gao ; Shui Yu ; Montgomery, James</creatorcontrib><description>Users in online social networking sites unknowingly disclose their sensitive information that aggravate the social and financial risks. Hence, to prevent the information loss and privacy exposure, users need to find ways to quantify their privacy level based on their online social network data. Current studies that focus on measuring the privacy risk and disclosure consider only a single source of data, neglecting the fact that users, in general, can have multiple social network accounts disclosing different sensitive information. In this paper, we investigate an approach that can help social media users to measure their privacy disclosure score (PDS) based on the information shared across multiple social networking sites. In particular, we identify the main factors that have impact on users privacy, namely, sensitivity and visibility, to obtain the final disclosure score for each user. By applying the statistical and fuzzy systems, we can specify the potential information loss for a user by using obtained PDS. Our evaluation results with real social media data show that our method can provide a better estimation of privacy disclosure score for users having presence in multiple online social networks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2720187</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Data models ; Data privacy ; Digital media ; Facebook ; fuzzy logic ; Fuzzy systems ; measurement ; Privacy ; Sensitivity ; Social networks ; Visibility</subject><ispartof>IEEE access, 2017-01, Vol.5, p.13118-13130</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1372c001694947fae7cc2221236d6c2a4f07b66b71d96e973f478681d1a8e9703</citedby><cites>FETCH-LOGICAL-c408t-1372c001694947fae7cc2221236d6c2a4f07b66b71d96e973f478681d1a8e9703</cites><orcidid>0000-0002-5232-4934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7959160$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Aghasian, Erfan</creatorcontrib><creatorcontrib>Garg, Saurabh</creatorcontrib><creatorcontrib>Longxiang Gao</creatorcontrib><creatorcontrib>Shui Yu</creatorcontrib><creatorcontrib>Montgomery, James</creatorcontrib><title>Scoring Users' Privacy Disclosure Across Multiple Online Social Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Users in online social networking sites unknowingly disclose their sensitive information that aggravate the social and financial risks. Hence, to prevent the information loss and privacy exposure, users need to find ways to quantify their privacy level based on their online social network data. Current studies that focus on measuring the privacy risk and disclosure consider only a single source of data, neglecting the fact that users, in general, can have multiple social network accounts disclosing different sensitive information. In this paper, we investigate an approach that can help social media users to measure their privacy disclosure score (PDS) based on the information shared across multiple social networking sites. In particular, we identify the main factors that have impact on users privacy, namely, sensitivity and visibility, to obtain the final disclosure score for each user. By applying the statistical and fuzzy systems, we can specify the potential information loss for a user by using obtained PDS. Our evaluation results with real social media data show that our method can provide a better estimation of privacy disclosure score for users having presence in multiple online social networks.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Digital media</subject><subject>Facebook</subject><subject>fuzzy logic</subject><subject>Fuzzy systems</subject><subject>measurement</subject><subject>Privacy</subject><subject>Sensitivity</subject><subject>Social networks</subject><subject>Visibility</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQjRBIVIUv4BKJA6cWb_FyrEKhSGxS4Ww5zqRyCXWxE1D_HkOqirnMonnvjeZl2QVGU4yRup6V5Xy5nBKExZSIlKQ4ykYEczWhBeXH_-rT7DzGNUoh06gQo2yxtD64zSp_ixDiVf4S3Jexu_zGRdv62AfIZzb4GPPHvu3ctoX8edO6DeRLb51p8yfovn14j2fZSWPaCOf7PM7ebuev5WLy8Hx3X84eJpYh2U0wFcQilNSZYqIxIKwlhGBCec0tMaxBouK8ErhWHJSgDROSS1xjI1OL6Di7H3hrb9Z6G9yHCTvtjdN_Ax9W2oTO2RY0q7CUGFhBa5tYmqoyyhpV1QpUBRVNXJcD1zb4zx5ip9e-D5t0viasKBSjQsq0RYetvz8EaA6qGOlfB_TggP51QO8dSKiLAeUA4IAQqlCYI_oD3muAmw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Aghasian, Erfan</creator><creator>Garg, Saurabh</creator><creator>Longxiang Gao</creator><creator>Shui Yu</creator><creator>Montgomery, James</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5232-4934</orcidid></search><sort><creationdate>20170101</creationdate><title>Scoring Users' Privacy Disclosure Across Multiple Online Social Networks</title><author>Aghasian, Erfan ; Garg, Saurabh ; Longxiang Gao ; Shui Yu ; Montgomery, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1372c001694947fae7cc2221236d6c2a4f07b66b71d96e973f478681d1a8e9703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Digital media</topic><topic>Facebook</topic><topic>fuzzy logic</topic><topic>Fuzzy systems</topic><topic>measurement</topic><topic>Privacy</topic><topic>Sensitivity</topic><topic>Social networks</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghasian, Erfan</creatorcontrib><creatorcontrib>Garg, Saurabh</creatorcontrib><creatorcontrib>Longxiang Gao</creatorcontrib><creatorcontrib>Shui Yu</creatorcontrib><creatorcontrib>Montgomery, James</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghasian, Erfan</au><au>Garg, Saurabh</au><au>Longxiang Gao</au><au>Shui Yu</au><au>Montgomery, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scoring Users' Privacy Disclosure Across Multiple Online Social Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>13118</spage><epage>13130</epage><pages>13118-13130</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Users in online social networking sites unknowingly disclose their sensitive information that aggravate the social and financial risks. Hence, to prevent the information loss and privacy exposure, users need to find ways to quantify their privacy level based on their online social network data. Current studies that focus on measuring the privacy risk and disclosure consider only a single source of data, neglecting the fact that users, in general, can have multiple social network accounts disclosing different sensitive information. In this paper, we investigate an approach that can help social media users to measure their privacy disclosure score (PDS) based on the information shared across multiple social networking sites. In particular, we identify the main factors that have impact on users privacy, namely, sensitivity and visibility, to obtain the final disclosure score for each user. By applying the statistical and fuzzy systems, we can specify the potential information loss for a user by using obtained PDS. Our evaluation results with real social media data show that our method can provide a better estimation of privacy disclosure score for users having presence in multiple online social networks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2720187</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5232-4934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2017-01, Vol.5, p.13118-13130 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455943788 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computational modeling Data models Data privacy Digital media fuzzy logic Fuzzy systems measurement Privacy Sensitivity Social networks Visibility |
title | Scoring Users' Privacy Disclosure Across Multiple Online Social Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scoring%20Users'%20Privacy%20Disclosure%20Across%20Multiple%20Online%20Social%20Networks&rft.jtitle=IEEE%20access&rft.au=Aghasian,%20Erfan&rft.date=2017-01-01&rft.volume=5&rft.spage=13118&rft.epage=13130&rft.pages=13118-13130&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2720187&rft_dat=%3Cproquest_ieee_%3E2455943788%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455943788&rft_id=info:pmid/&rft_ieee_id=7959160&rft_doaj_id=oai_doaj_org_article_4b1881e453dc478fbba9ca9bd9e9beb3&rfr_iscdi=true |