Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application
With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seve...
Gespeichert in:
Veröffentlicht in: | IEEE access 2017-01, Vol.5, p.17136-17148 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17148 |
---|---|
container_issue | |
container_start_page | 17136 |
container_title | IEEE access |
container_volume | 5 |
creator | Fan, Xiaomao Chen, Runge He, Chenguang Cai, Yunpeng Wang, Pu Li, Ye |
description | With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms. |
doi_str_mv | 10.1109/ACCESS.2017.2743525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455940486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8016339</ieee_id><doaj_id>oai_doaj_org_article_db7cf75ace714a1389491b006ff80993</doaj_id><sourcerecordid>2455940486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</originalsourceid><addsrcrecordid>eNpNUV1LIzEUHWQXFPUX-BLwud1kkkySx1q7Krjsgvoc7uSjpkybMUmR_ntTR2Tvy70czgfc0zRXBM8JwerXYrlcPT3NW0zEvBWM8pafNGct6dSMctr9-O8-bS5z3uA6skJcnDVvz_EdkkWLfYlbKK5eOxgOOWQUPVoNzpQUTWWEuE6wRTdhjW6hAOoP6C7B-BpMRv8qxeUcdmv0sgsF-ZjQn9iHwaF7B0N5RYtxHIKBEuLuovnpYcju8mufNy-_V8_L-9nj37uH5eJxZhiWZSaoMsKC7zsglIN3tG-9M5xZhlvLvDRAFbGEdkRKjwXY1nllO4sJ643o6HnzMPnaCBs9prCFdNARgv4EYlprSCWYwWnbC-MFB-MEYTVOKqZIj3HnvcRK0ep1PXmNKb7tXS56E_epPirrlnGuGGbymEgnlkkx5-T8dyrB-liVnqrSx6r0V1VVdTWpgnPuWyEx6ShV9ANbJJBL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455940486</pqid></control><display><type>article</type><title>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fan, Xiaomao ; Chen, Runge ; He, Chenguang ; Cai, Yunpeng ; Wang, Pu ; Li, Ye</creator><creatorcontrib>Fan, Xiaomao ; Chen, Runge ; He, Chenguang ; Cai, Yunpeng ; Wang, Pu ; Li, Ye</creatorcontrib><description>With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2743525</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; automated ECG analysis ; Automation ; Central processing units ; Classification algorithms ; concurrent computing ; CPUs ; Economic impact ; Electrocardiography ; Feature extraction ; GPU computing ; Graphics processing units ; Heart beat ; Medical services ; mobile health ; parallel algorithm ; Pipelines ; Signal processing</subject><ispartof>IEEE access, 2017-01, Vol.5, p.17136-17148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</citedby><cites>FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</cites><orcidid>0000-0002-5351-8546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8016339$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fan, Xiaomao</creatorcontrib><creatorcontrib>Chen, Runge</creatorcontrib><creatorcontrib>He, Chenguang</creatorcontrib><creatorcontrib>Cai, Yunpeng</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><title>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>automated ECG analysis</subject><subject>Automation</subject><subject>Central processing units</subject><subject>Classification algorithms</subject><subject>concurrent computing</subject><subject>CPUs</subject><subject>Economic impact</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>GPU computing</subject><subject>Graphics processing units</subject><subject>Heart beat</subject><subject>Medical services</subject><subject>mobile health</subject><subject>parallel algorithm</subject><subject>Pipelines</subject><subject>Signal processing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LIzEUHWQXFPUX-BLwud1kkkySx1q7Krjsgvoc7uSjpkybMUmR_ntTR2Tvy70czgfc0zRXBM8JwerXYrlcPT3NW0zEvBWM8pafNGct6dSMctr9-O8-bS5z3uA6skJcnDVvz_EdkkWLfYlbKK5eOxgOOWQUPVoNzpQUTWWEuE6wRTdhjW6hAOoP6C7B-BpMRv8qxeUcdmv0sgsF-ZjQn9iHwaF7B0N5RYtxHIKBEuLuovnpYcju8mufNy-_V8_L-9nj37uH5eJxZhiWZSaoMsKC7zsglIN3tG-9M5xZhlvLvDRAFbGEdkRKjwXY1nllO4sJ643o6HnzMPnaCBs9prCFdNARgv4EYlprSCWYwWnbC-MFB-MEYTVOKqZIj3HnvcRK0ep1PXmNKb7tXS56E_epPirrlnGuGGbymEgnlkkx5-T8dyrB-liVnqrSx6r0V1VVdTWpgnPuWyEx6ShV9ANbJJBL</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Fan, Xiaomao</creator><creator>Chen, Runge</creator><creator>He, Chenguang</creator><creator>Cai, Yunpeng</creator><creator>Wang, Pu</creator><creator>Li, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid></search><sort><creationdate>20170101</creationdate><title>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</title><author>Fan, Xiaomao ; Chen, Runge ; He, Chenguang ; Cai, Yunpeng ; Wang, Pu ; Li, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>automated ECG analysis</topic><topic>Automation</topic><topic>Central processing units</topic><topic>Classification algorithms</topic><topic>concurrent computing</topic><topic>CPUs</topic><topic>Economic impact</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>GPU computing</topic><topic>Graphics processing units</topic><topic>Heart beat</topic><topic>Medical services</topic><topic>mobile health</topic><topic>parallel algorithm</topic><topic>Pipelines</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiaomao</creatorcontrib><creatorcontrib>Chen, Runge</creatorcontrib><creatorcontrib>He, Chenguang</creatorcontrib><creatorcontrib>Cai, Yunpeng</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiaomao</au><au>Chen, Runge</au><au>He, Chenguang</au><au>Cai, Yunpeng</au><au>Wang, Pu</au><au>Li, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>17136</spage><epage>17148</epage><pages>17136-17148</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2743525</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2017-01, Vol.5, p.17136-17148 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455940486 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithm design and analysis Algorithms automated ECG analysis Automation Central processing units Classification algorithms concurrent computing CPUs Economic impact Electrocardiography Feature extraction GPU computing Graphics processing units Heart beat Medical services mobile health parallel algorithm Pipelines Signal processing |
title | Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Automated%20Analysis%20of%20Electrocardiogram%20Big%20Data%20by%20Graphics%20Processing%20Unit%20for%20Mobile%20Health%20Application&rft.jtitle=IEEE%20access&rft.au=Fan,%20Xiaomao&rft.date=2017-01-01&rft.volume=5&rft.spage=17136&rft.epage=17148&rft.pages=17136-17148&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2743525&rft_dat=%3Cproquest_doaj_%3E2455940486%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455940486&rft_id=info:pmid/&rft_ieee_id=8016339&rft_doaj_id=oai_doaj_org_article_db7cf75ace714a1389491b006ff80993&rfr_iscdi=true |