Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application

With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2017-01, Vol.5, p.17136-17148
Hauptverfasser: Fan, Xiaomao, Chen, Runge, He, Chenguang, Cai, Yunpeng, Wang, Pu, Li, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17148
container_issue
container_start_page 17136
container_title IEEE access
container_volume 5
creator Fan, Xiaomao
Chen, Runge
He, Chenguang
Cai, Yunpeng
Wang, Pu
Li, Ye
description With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms.
doi_str_mv 10.1109/ACCESS.2017.2743525
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455940486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8016339</ieee_id><doaj_id>oai_doaj_org_article_db7cf75ace714a1389491b006ff80993</doaj_id><sourcerecordid>2455940486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</originalsourceid><addsrcrecordid>eNpNUV1LIzEUHWQXFPUX-BLwud1kkkySx1q7Krjsgvoc7uSjpkybMUmR_ntTR2Tvy70czgfc0zRXBM8JwerXYrlcPT3NW0zEvBWM8pafNGct6dSMctr9-O8-bS5z3uA6skJcnDVvz_EdkkWLfYlbKK5eOxgOOWQUPVoNzpQUTWWEuE6wRTdhjW6hAOoP6C7B-BpMRv8qxeUcdmv0sgsF-ZjQn9iHwaF7B0N5RYtxHIKBEuLuovnpYcju8mufNy-_V8_L-9nj37uH5eJxZhiWZSaoMsKC7zsglIN3tG-9M5xZhlvLvDRAFbGEdkRKjwXY1nllO4sJ643o6HnzMPnaCBs9prCFdNARgv4EYlprSCWYwWnbC-MFB-MEYTVOKqZIj3HnvcRK0ep1PXmNKb7tXS56E_epPirrlnGuGGbymEgnlkkx5-T8dyrB-liVnqrSx6r0V1VVdTWpgnPuWyEx6ShV9ANbJJBL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455940486</pqid></control><display><type>article</type><title>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fan, Xiaomao ; Chen, Runge ; He, Chenguang ; Cai, Yunpeng ; Wang, Pu ; Li, Ye</creator><creatorcontrib>Fan, Xiaomao ; Chen, Runge ; He, Chenguang ; Cai, Yunpeng ; Wang, Pu ; Li, Ye</creatorcontrib><description>With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2743525</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; automated ECG analysis ; Automation ; Central processing units ; Classification algorithms ; concurrent computing ; CPUs ; Economic impact ; Electrocardiography ; Feature extraction ; GPU computing ; Graphics processing units ; Heart beat ; Medical services ; mobile health ; parallel algorithm ; Pipelines ; Signal processing</subject><ispartof>IEEE access, 2017-01, Vol.5, p.17136-17148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</citedby><cites>FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</cites><orcidid>0000-0002-5351-8546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8016339$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fan, Xiaomao</creatorcontrib><creatorcontrib>Chen, Runge</creatorcontrib><creatorcontrib>He, Chenguang</creatorcontrib><creatorcontrib>Cai, Yunpeng</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><title>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>automated ECG analysis</subject><subject>Automation</subject><subject>Central processing units</subject><subject>Classification algorithms</subject><subject>concurrent computing</subject><subject>CPUs</subject><subject>Economic impact</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>GPU computing</subject><subject>Graphics processing units</subject><subject>Heart beat</subject><subject>Medical services</subject><subject>mobile health</subject><subject>parallel algorithm</subject><subject>Pipelines</subject><subject>Signal processing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LIzEUHWQXFPUX-BLwud1kkkySx1q7Krjsgvoc7uSjpkybMUmR_ntTR2Tvy70czgfc0zRXBM8JwerXYrlcPT3NW0zEvBWM8pafNGct6dSMctr9-O8-bS5z3uA6skJcnDVvz_EdkkWLfYlbKK5eOxgOOWQUPVoNzpQUTWWEuE6wRTdhjW6hAOoP6C7B-BpMRv8qxeUcdmv0sgsF-ZjQn9iHwaF7B0N5RYtxHIKBEuLuovnpYcju8mufNy-_V8_L-9nj37uH5eJxZhiWZSaoMsKC7zsglIN3tG-9M5xZhlvLvDRAFbGEdkRKjwXY1nllO4sJ643o6HnzMPnaCBs9prCFdNARgv4EYlprSCWYwWnbC-MFB-MEYTVOKqZIj3HnvcRK0ep1PXmNKb7tXS56E_epPirrlnGuGGbymEgnlkkx5-T8dyrB-liVnqrSx6r0V1VVdTWpgnPuWyEx6ShV9ANbJJBL</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Fan, Xiaomao</creator><creator>Chen, Runge</creator><creator>He, Chenguang</creator><creator>Cai, Yunpeng</creator><creator>Wang, Pu</creator><creator>Li, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid></search><sort><creationdate>20170101</creationdate><title>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</title><author>Fan, Xiaomao ; Chen, Runge ; He, Chenguang ; Cai, Yunpeng ; Wang, Pu ; Li, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-739c7dafb6a135afe3b2fec54d402d4f8ca391d136188f07ad2ef9d6d014bc763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>automated ECG analysis</topic><topic>Automation</topic><topic>Central processing units</topic><topic>Classification algorithms</topic><topic>concurrent computing</topic><topic>CPUs</topic><topic>Economic impact</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>GPU computing</topic><topic>Graphics processing units</topic><topic>Heart beat</topic><topic>Medical services</topic><topic>mobile health</topic><topic>parallel algorithm</topic><topic>Pipelines</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiaomao</creatorcontrib><creatorcontrib>Chen, Runge</creatorcontrib><creatorcontrib>He, Chenguang</creatorcontrib><creatorcontrib>Cai, Yunpeng</creatorcontrib><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiaomao</au><au>Chen, Runge</au><au>He, Chenguang</au><au>Cai, Yunpeng</au><au>Wang, Pu</au><au>Li, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>17136</spage><epage>17148</epage><pages>17136-17148</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rapid development of mobile health technologies and applications in recent years, large amounts of electrocardiogram (ECG) signals that need to be processed timely have been produced. Although the CPU-based sequential automated ECG analysis algorithm (CPU-AECG) designed for identifying seven types of heartbeats has been in use for years, it is single-threaded and handling lots of concurrent ECG signals still poses a severe challenge. In this paper, we propose a novel GPU-based automated ECG analysis algorithm (GPU-AECG) to effectively shorten the program executing time. A new concurrencybased GPU-AECG, named cGPU-AECG, is also developed to handle multiple concurrent signals. Compared with the CPU-AECG, our cGPU-AECG achieves a 35 times speedup when handling 24-h-long ECG data, without reducing the classification accuracy. With cGPU-AECG, we can handle 24-h-ECG signals from thousands of users in a few seconds and provide prompt feedback, which not only greatly improves the user experience of mobile health services, but also reduces the economic cost of building healthcare platforms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2743525</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5351-8546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017-01, Vol.5, p.17136-17148
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455940486
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithm design and analysis
Algorithms
automated ECG analysis
Automation
Central processing units
Classification algorithms
concurrent computing
CPUs
Economic impact
Electrocardiography
Feature extraction
GPU computing
Graphics processing units
Heart beat
Medical services
mobile health
parallel algorithm
Pipelines
Signal processing
title Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Automated%20Analysis%20of%20Electrocardiogram%20Big%20Data%20by%20Graphics%20Processing%20Unit%20for%20Mobile%20Health%20Application&rft.jtitle=IEEE%20access&rft.au=Fan,%20Xiaomao&rft.date=2017-01-01&rft.volume=5&rft.spage=17136&rft.epage=17148&rft.pages=17136-17148&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2743525&rft_dat=%3Cproquest_doaj_%3E2455940486%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455940486&rft_id=info:pmid/&rft_ieee_id=8016339&rft_doaj_id=oai_doaj_org_article_db7cf75ace714a1389491b006ff80993&rfr_iscdi=true