Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint
This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacit...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018, Vol.6, p.30977-30989 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30989 |
---|---|
container_issue | |
container_start_page | 30977 |
container_title | IEEE access |
container_volume | 6 |
creator | Ranjbar, Mohammad Tran, Nghi H. Nguyen, Truyen V. Gursoy, Mustafa Cenk Nguyen-Le, Hung |
description | This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise Z consisting of Gaussian elements with arbitrary means and the interference U with an arbitrary distribution. The only very mild condition imposed on U is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit U having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an M -user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region. |
doi_str_mv | 10.1109/ACCESS.2018.2837056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455929040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359276</ieee_id><doaj_id>oai_doaj_org_article_87a9600b1da740178581b8cf3cccf8d5</doaj_id><sourcerecordid>2455929040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</originalsourceid><addsrcrecordid>eNpNkU1P3DAQhqOqSCDKL-ASqeds_RF_5LiKKEWiLdLC2Zo448Xbrb21s0Uc-O94Nwjhi2dG7_uMNG9VXVKyoJR035Z9f7VaLRihesE0V0TIT9UZo7JruODy84f6tLrIeUPK02Uk1Fn10sMOrJ-em6V99Pjfh3W98usA21y7mOq76MPUTLE5FjWEsf65305-t8XisJhz3T9CCFj0D2HEVP-KobmGfc4eQml8xqPrDuFPoT0VRR9DnhIU3pfqxJVNePH2n1cP36_u-x_N7e_rm35529hW6KnpUBFNLLhR6pbpYaB8HCijg5KSaiSSS-FaaPng0DLrSiMk60A5NmDXcX5e3czcMcLG7JL_C-nZRPDmOIhpbSBN3m7RaAWdJGSgI6iWUKWFpoO2jltrnR5FYX2dWbsU_-0xT2YT9-lwMMNaITrWkZYUFZ9VNsWcE7r3rZSYQ2xmjs0cYjNvsRXX5ezyiPju0LxQleSvGoyT3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929040</pqid></control><display><type>article</type><title>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ranjbar, Mohammad ; Tran, Nghi H. ; Nguyen, Truyen V. ; Gursoy, Mustafa Cenk ; Nguyen-Le, Hung</creator><creatorcontrib>Ranjbar, Mohammad ; Tran, Nghi H. ; Nguyen, Truyen V. ; Gursoy, Mustafa Cenk ; Nguyen-Le, Hung</creatorcontrib><description><![CDATA[This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula> consisting of Gaussian elements with arbitrary means and the interference <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> with an arbitrary distribution. The only very mild condition imposed on <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula>-user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2837056</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel capacity ; Channels ; Codes ; Cognitive radio ; DSL ; Entropy ; Gaussian mixture ; Gaussian noise ; Interference ; Kuhn-Tucker method ; multiple access channels ; Noise ; non-Gaussian interference ; optimal inputs ; Probability density function ; Random noise ; Theorems ; Upper bound ; Upper bounds</subject><ispartof>IEEE access, 2018, Vol.6, p.30977-30989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</citedby><cites>FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</cites><orcidid>0000-0002-7352-1013 ; 0000-0002-4246-0190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359276$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ranjbar, Mohammad</creatorcontrib><creatorcontrib>Tran, Nghi H.</creatorcontrib><creatorcontrib>Nguyen, Truyen V.</creatorcontrib><creatorcontrib>Gursoy, Mustafa Cenk</creatorcontrib><creatorcontrib>Nguyen-Le, Hung</creatorcontrib><title>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula> consisting of Gaussian elements with arbitrary means and the interference <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> with an arbitrary distribution. The only very mild condition imposed on <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula>-user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region.]]></description><subject>Channel capacity</subject><subject>Channels</subject><subject>Codes</subject><subject>Cognitive radio</subject><subject>DSL</subject><subject>Entropy</subject><subject>Gaussian mixture</subject><subject>Gaussian noise</subject><subject>Interference</subject><subject>Kuhn-Tucker method</subject><subject>multiple access channels</subject><subject>Noise</subject><subject>non-Gaussian interference</subject><subject>optimal inputs</subject><subject>Probability density function</subject><subject>Random noise</subject><subject>Theorems</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1P3DAQhqOqSCDKL-ASqeds_RF_5LiKKEWiLdLC2Zo448Xbrb21s0Uc-O94Nwjhi2dG7_uMNG9VXVKyoJR035Z9f7VaLRihesE0V0TIT9UZo7JruODy84f6tLrIeUPK02Uk1Fn10sMOrJ-em6V99Pjfh3W98usA21y7mOq76MPUTLE5FjWEsf65305-t8XisJhz3T9CCFj0D2HEVP-KobmGfc4eQml8xqPrDuFPoT0VRR9DnhIU3pfqxJVNePH2n1cP36_u-x_N7e_rm35529hW6KnpUBFNLLhR6pbpYaB8HCijg5KSaiSSS-FaaPng0DLrSiMk60A5NmDXcX5e3czcMcLG7JL_C-nZRPDmOIhpbSBN3m7RaAWdJGSgI6iWUKWFpoO2jltrnR5FYX2dWbsU_-0xT2YT9-lwMMNaITrWkZYUFZ9VNsWcE7r3rZSYQ2xmjs0cYjNvsRXX5ezyiPju0LxQleSvGoyT3A</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Ranjbar, Mohammad</creator><creator>Tran, Nghi H.</creator><creator>Nguyen, Truyen V.</creator><creator>Gursoy, Mustafa Cenk</creator><creator>Nguyen-Le, Hung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7352-1013</orcidid><orcidid>https://orcid.org/0000-0002-4246-0190</orcidid></search><sort><creationdate>2018</creationdate><title>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</title><author>Ranjbar, Mohammad ; Tran, Nghi H. ; Nguyen, Truyen V. ; Gursoy, Mustafa Cenk ; Nguyen-Le, Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channel capacity</topic><topic>Channels</topic><topic>Codes</topic><topic>Cognitive radio</topic><topic>DSL</topic><topic>Entropy</topic><topic>Gaussian mixture</topic><topic>Gaussian noise</topic><topic>Interference</topic><topic>Kuhn-Tucker method</topic><topic>multiple access channels</topic><topic>Noise</topic><topic>non-Gaussian interference</topic><topic>optimal inputs</topic><topic>Probability density function</topic><topic>Random noise</topic><topic>Theorems</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjbar, Mohammad</creatorcontrib><creatorcontrib>Tran, Nghi H.</creatorcontrib><creatorcontrib>Nguyen, Truyen V.</creatorcontrib><creatorcontrib>Gursoy, Mustafa Cenk</creatorcontrib><creatorcontrib>Nguyen-Le, Hung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbar, Mohammad</au><au>Tran, Nghi H.</au><au>Nguyen, Truyen V.</au><au>Gursoy, Mustafa Cenk</au><au>Nguyen-Le, Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>30977</spage><epage>30989</epage><pages>30977-30989</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula> consisting of Gaussian elements with arbitrary means and the interference <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> with an arbitrary distribution. The only very mild condition imposed on <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula>-user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2837056</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7352-1013</orcidid><orcidid>https://orcid.org/0000-0002-4246-0190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018, Vol.6, p.30977-30989 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455929040 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Channel capacity Channels Codes Cognitive radio DSL Entropy Gaussian mixture Gaussian noise Interference Kuhn-Tucker method multiple access channels Noise non-Gaussian interference optimal inputs Probability density function Random noise Theorems Upper bound Upper bounds |
title | Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity-Achieving%20Signals%20for%20Point-to-Point%20and%20Multiple-Access%20Channels%20Under%20Non-Gaussian%20Noise%20and%20Peak%20Power%20Constraint&rft.jtitle=IEEE%20access&rft.au=Ranjbar,%20Mohammad&rft.date=2018&rft.volume=6&rft.spage=30977&rft.epage=30989&rft.pages=30977-30989&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2837056&rft_dat=%3Cproquest_doaj_%3E2455929040%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455929040&rft_id=info:pmid/&rft_ieee_id=8359276&rft_doaj_id=oai_doaj_org_article_87a9600b1da740178581b8cf3cccf8d5&rfr_iscdi=true |