Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint

This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018, Vol.6, p.30977-30989
Hauptverfasser: Ranjbar, Mohammad, Tran, Nghi H., Nguyen, Truyen V., Gursoy, Mustafa Cenk, Nguyen-Le, Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30989
container_issue
container_start_page 30977
container_title IEEE access
container_volume 6
creator Ranjbar, Mohammad
Tran, Nghi H.
Nguyen, Truyen V.
Gursoy, Mustafa Cenk
Nguyen-Le, Hung
description This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise Z consisting of Gaussian elements with arbitrary means and the interference U with an arbitrary distribution. The only very mild condition imposed on U is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit U having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an M -user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region.
doi_str_mv 10.1109/ACCESS.2018.2837056
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455929040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359276</ieee_id><doaj_id>oai_doaj_org_article_87a9600b1da740178581b8cf3cccf8d5</doaj_id><sourcerecordid>2455929040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</originalsourceid><addsrcrecordid>eNpNkU1P3DAQhqOqSCDKL-ASqeds_RF_5LiKKEWiLdLC2Zo448Xbrb21s0Uc-O94Nwjhi2dG7_uMNG9VXVKyoJR035Z9f7VaLRihesE0V0TIT9UZo7JruODy84f6tLrIeUPK02Uk1Fn10sMOrJ-em6V99Pjfh3W98usA21y7mOq76MPUTLE5FjWEsf65305-t8XisJhz3T9CCFj0D2HEVP-KobmGfc4eQml8xqPrDuFPoT0VRR9DnhIU3pfqxJVNePH2n1cP36_u-x_N7e_rm35529hW6KnpUBFNLLhR6pbpYaB8HCijg5KSaiSSS-FaaPng0DLrSiMk60A5NmDXcX5e3czcMcLG7JL_C-nZRPDmOIhpbSBN3m7RaAWdJGSgI6iWUKWFpoO2jltrnR5FYX2dWbsU_-0xT2YT9-lwMMNaITrWkZYUFZ9VNsWcE7r3rZSYQ2xmjs0cYjNvsRXX5ezyiPju0LxQleSvGoyT3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929040</pqid></control><display><type>article</type><title>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ranjbar, Mohammad ; Tran, Nghi H. ; Nguyen, Truyen V. ; Gursoy, Mustafa Cenk ; Nguyen-Le, Hung</creator><creatorcontrib>Ranjbar, Mohammad ; Tran, Nghi H. ; Nguyen, Truyen V. ; Gursoy, Mustafa Cenk ; Nguyen-Le, Hung</creatorcontrib><description><![CDATA[This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula> consisting of Gaussian elements with arbitrary means and the interference <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> with an arbitrary distribution. The only very mild condition imposed on <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula>-user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2837056</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel capacity ; Channels ; Codes ; Cognitive radio ; DSL ; Entropy ; Gaussian mixture ; Gaussian noise ; Interference ; Kuhn-Tucker method ; multiple access channels ; Noise ; non-Gaussian interference ; optimal inputs ; Probability density function ; Random noise ; Theorems ; Upper bound ; Upper bounds</subject><ispartof>IEEE access, 2018, Vol.6, p.30977-30989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</citedby><cites>FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</cites><orcidid>0000-0002-7352-1013 ; 0000-0002-4246-0190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359276$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ranjbar, Mohammad</creatorcontrib><creatorcontrib>Tran, Nghi H.</creatorcontrib><creatorcontrib>Nguyen, Truyen V.</creatorcontrib><creatorcontrib>Gursoy, Mustafa Cenk</creatorcontrib><creatorcontrib>Nguyen-Le, Hung</creatorcontrib><title>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula> consisting of Gaussian elements with arbitrary means and the interference <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> with an arbitrary distribution. The only very mild condition imposed on <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula>-user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region.]]></description><subject>Channel capacity</subject><subject>Channels</subject><subject>Codes</subject><subject>Cognitive radio</subject><subject>DSL</subject><subject>Entropy</subject><subject>Gaussian mixture</subject><subject>Gaussian noise</subject><subject>Interference</subject><subject>Kuhn-Tucker method</subject><subject>multiple access channels</subject><subject>Noise</subject><subject>non-Gaussian interference</subject><subject>optimal inputs</subject><subject>Probability density function</subject><subject>Random noise</subject><subject>Theorems</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1P3DAQhqOqSCDKL-ASqeds_RF_5LiKKEWiLdLC2Zo448Xbrb21s0Uc-O94Nwjhi2dG7_uMNG9VXVKyoJR035Z9f7VaLRihesE0V0TIT9UZo7JruODy84f6tLrIeUPK02Uk1Fn10sMOrJ-em6V99Pjfh3W98usA21y7mOq76MPUTLE5FjWEsf65305-t8XisJhz3T9CCFj0D2HEVP-KobmGfc4eQml8xqPrDuFPoT0VRR9DnhIU3pfqxJVNePH2n1cP36_u-x_N7e_rm35529hW6KnpUBFNLLhR6pbpYaB8HCijg5KSaiSSS-FaaPng0DLrSiMk60A5NmDXcX5e3czcMcLG7JL_C-nZRPDmOIhpbSBN3m7RaAWdJGSgI6iWUKWFpoO2jltrnR5FYX2dWbsU_-0xT2YT9-lwMMNaITrWkZYUFZ9VNsWcE7r3rZSYQ2xmjs0cYjNvsRXX5ezyiPju0LxQleSvGoyT3A</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Ranjbar, Mohammad</creator><creator>Tran, Nghi H.</creator><creator>Nguyen, Truyen V.</creator><creator>Gursoy, Mustafa Cenk</creator><creator>Nguyen-Le, Hung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7352-1013</orcidid><orcidid>https://orcid.org/0000-0002-4246-0190</orcidid></search><sort><creationdate>2018</creationdate><title>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</title><author>Ranjbar, Mohammad ; Tran, Nghi H. ; Nguyen, Truyen V. ; Gursoy, Mustafa Cenk ; Nguyen-Le, Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-9e7080cafd68428bb13db121b76618e06365f4a43bfec2cf5f45629a7f2be9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channel capacity</topic><topic>Channels</topic><topic>Codes</topic><topic>Cognitive radio</topic><topic>DSL</topic><topic>Entropy</topic><topic>Gaussian mixture</topic><topic>Gaussian noise</topic><topic>Interference</topic><topic>Kuhn-Tucker method</topic><topic>multiple access channels</topic><topic>Noise</topic><topic>non-Gaussian interference</topic><topic>optimal inputs</topic><topic>Probability density function</topic><topic>Random noise</topic><topic>Theorems</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjbar, Mohammad</creatorcontrib><creatorcontrib>Tran, Nghi H.</creatorcontrib><creatorcontrib>Nguyen, Truyen V.</creatorcontrib><creatorcontrib>Gursoy, Mustafa Cenk</creatorcontrib><creatorcontrib>Nguyen-Le, Hung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbar, Mohammad</au><au>Tran, Nghi H.</au><au>Nguyen, Truyen V.</au><au>Gursoy, Mustafa Cenk</au><au>Nguyen-Le, Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>30977</spage><epage>30989</epage><pages>30977-30989</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This paper generalizes and proves the discrete and finite nature of the capacity-achieving signaling schemes for general classes of non-Gaussian point-to-point and multiple-access channels (MACs) under peak power constraints. Specifically, we first investigate the detailed characteristics of capacity-achieving inputs for a single-user channel that is impaired by two types of noise: a Gaussian mixture (GM) noise <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula> consisting of Gaussian elements with arbitrary means and the interference <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> with an arbitrary distribution. The only very mild condition imposed on <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> is that its second moment is finite. To this end, one of the important results is the establishment of the Kuhn-Tucker condition (KTC) on a capacity-achieving input and the proof of analyticity of the KTC using Fubini-Tonelli's and Morera's theorems. Using the Bolzano-Weierstrass's and Identity's theorems, we then show that a capacity-achieving input is continuous if and only if the KTC function is zero on the entire real line. However, by examining an upper bound on the tail of the output PDF, it is demonstrated that the KTC function must be bounded away from zero. As such, any capacity-achieving input must be discrete with a finite number of mass points. Finally, we exploit <inline-formula> <tex-math notation="LaTeX">U </tex-math></inline-formula> having an arbitrary distribution to show that the optimal input distributions that achieve the sum-capacity of an <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula>-user MAC under GM noise are discrete and finite. We also prove that there exist at least two distinct points that achieve the sum capacity on the rate region.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2837056</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7352-1013</orcidid><orcidid>https://orcid.org/0000-0002-4246-0190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.30977-30989
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455929040
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Channel capacity
Channels
Codes
Cognitive radio
DSL
Entropy
Gaussian mixture
Gaussian noise
Interference
Kuhn-Tucker method
multiple access channels
Noise
non-Gaussian interference
optimal inputs
Probability density function
Random noise
Theorems
Upper bound
Upper bounds
title Capacity-Achieving Signals for Point-to-Point and Multiple-Access Channels Under Non-Gaussian Noise and Peak Power Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity-Achieving%20Signals%20for%20Point-to-Point%20and%20Multiple-Access%20Channels%20Under%20Non-Gaussian%20Noise%20and%20Peak%20Power%20Constraint&rft.jtitle=IEEE%20access&rft.au=Ranjbar,%20Mohammad&rft.date=2018&rft.volume=6&rft.spage=30977&rft.epage=30989&rft.pages=30977-30989&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2837056&rft_dat=%3Cproquest_doaj_%3E2455929040%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455929040&rft_id=info:pmid/&rft_ieee_id=8359276&rft_doaj_id=oai_doaj_org_article_87a9600b1da740178581b8cf3cccf8d5&rfr_iscdi=true