Road Object Detection Using a Disparity-Based Fusion Model
Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detec...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.19654-19663 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19663 |
---|---|
container_issue | |
container_start_page | 19654 |
container_title | IEEE access |
container_volume | 6 |
creator | Chen, Jing Xu, Wenqiang Peng, Weimin Bu, Wanghui Xing, Baixi Liu, Geng |
description | Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes. |
doi_str_mv | 10.1109/ACCESS.2018.2825229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455921869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8334544</ieee_id><doaj_id>oai_doaj_org_article_ea6147dfd293415c858b7faf7f534f15</doaj_id><sourcerecordid>2455921869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmEuUXcGniudj9mO7WGxZQEgyJyHkz3e6SNsjibjnw7y2WEOfyJm_mvZm8KBqRdExImj9PimK2Xo9pSuSYSgqU5jfRgJIsTxiw7PZffx8NQ2jSrmRHgRhEL58Oq3hVNka38dS0HdRuH29Cvd_GGE_rcEBft6fkFYOp4vkxnMcfrjK7x-jO4i6Y4QUfos189lW8J8vV26KYLBPNU9kmKEqtZcaYAAY8JxnPuEGmy0pwK1CjBKGJKavSMiACrDbWQIoo0JYEKHuIFr1v5bBRB19_oz8ph7X6I5zfKvRtrXdGGcwIF5WtaM44AS1BlsKiFRYYtwQ6r6fe6-Ddz9GEVjXu6Pfd-4pygJwSmeXdFuu3tHcheGOvV0mqzpmrPnN1zlxdMu9Uo15VG2OuCskYB87ZLxQbe94</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455921869</pqid></control><display><type>article</type><title>Road Object Detection Using a Disparity-Based Fusion Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Jing ; Xu, Wenqiang ; Peng, Weimin ; Bu, Wanghui ; Xing, Baixi ; Liu, Geng</creator><creatorcontrib>Chen, Jing ; Xu, Wenqiang ; Peng, Weimin ; Bu, Wanghui ; Xing, Baixi ; Liu, Geng</creatorcontrib><description>Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2825229</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Computational modeling ; disparity ; Feature extraction ; multi-scale pooling ; Object detection ; Object recognition ; Occlusion ; proposal ; Roads ; Solid modeling ; stereo vision ; Three dimensional models ; Two dimensional models</subject><ispartof>IEEE access, 2018-01, Vol.6, p.19654-19663</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</citedby><cites>FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</cites><orcidid>0000-0003-3127-8462 ; 0000-0003-3378-6719 ; 0000-0002-2486-2460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8334544$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Xu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Weimin</creatorcontrib><creatorcontrib>Bu, Wanghui</creatorcontrib><creatorcontrib>Xing, Baixi</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><title>Road Object Detection Using a Disparity-Based Fusion Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes.</description><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>disparity</subject><subject>Feature extraction</subject><subject>multi-scale pooling</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>proposal</subject><subject>Roads</subject><subject>Solid modeling</subject><subject>stereo vision</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQbYwmEuUXcGniudj9mO7WGxZQEgyJyHkz3e6SNsjibjnw7y2WEOfyJm_mvZm8KBqRdExImj9PimK2Xo9pSuSYSgqU5jfRgJIsTxiw7PZffx8NQ2jSrmRHgRhEL58Oq3hVNka38dS0HdRuH29Cvd_GGE_rcEBft6fkFYOp4vkxnMcfrjK7x-jO4i6Y4QUfos189lW8J8vV26KYLBPNU9kmKEqtZcaYAAY8JxnPuEGmy0pwK1CjBKGJKavSMiACrDbWQIoo0JYEKHuIFr1v5bBRB19_oz8ph7X6I5zfKvRtrXdGGcwIF5WtaM44AS1BlsKiFRYYtwQ6r6fe6-Ddz9GEVjXu6Pfd-4pygJwSmeXdFuu3tHcheGOvV0mqzpmrPnN1zlxdMu9Uo15VG2OuCskYB87ZLxQbe94</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chen, Jing</creator><creator>Xu, Wenqiang</creator><creator>Peng, Weimin</creator><creator>Bu, Wanghui</creator><creator>Xing, Baixi</creator><creator>Liu, Geng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3127-8462</orcidid><orcidid>https://orcid.org/0000-0003-3378-6719</orcidid><orcidid>https://orcid.org/0000-0002-2486-2460</orcidid></search><sort><creationdate>20180101</creationdate><title>Road Object Detection Using a Disparity-Based Fusion Model</title><author>Chen, Jing ; Xu, Wenqiang ; Peng, Weimin ; Bu, Wanghui ; Xing, Baixi ; Liu, Geng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>disparity</topic><topic>Feature extraction</topic><topic>multi-scale pooling</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>proposal</topic><topic>Roads</topic><topic>Solid modeling</topic><topic>stereo vision</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Xu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Weimin</creatorcontrib><creatorcontrib>Bu, Wanghui</creatorcontrib><creatorcontrib>Xing, Baixi</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jing</au><au>Xu, Wenqiang</au><au>Peng, Weimin</au><au>Bu, Wanghui</au><au>Xing, Baixi</au><au>Liu, Geng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Road Object Detection Using a Disparity-Based Fusion Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>19654</spage><epage>19663</epage><pages>19654-19663</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2825229</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3127-8462</orcidid><orcidid>https://orcid.org/0000-0003-3378-6719</orcidid><orcidid>https://orcid.org/0000-0002-2486-2460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.19654-19663 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455921869 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation models Computational modeling disparity Feature extraction multi-scale pooling Object detection Object recognition Occlusion proposal Roads Solid modeling stereo vision Three dimensional models Two dimensional models |
title | Road Object Detection Using a Disparity-Based Fusion Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Road%20Object%20Detection%20Using%20a%20Disparity-Based%20Fusion%20Model&rft.jtitle=IEEE%20access&rft.au=Chen,%20Jing&rft.date=2018-01-01&rft.volume=6&rft.spage=19654&rft.epage=19663&rft.pages=19654-19663&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2825229&rft_dat=%3Cproquest_doaj_%3E2455921869%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455921869&rft_id=info:pmid/&rft_ieee_id=8334544&rft_doaj_id=oai_doaj_org_article_ea6147dfd293415c858b7faf7f534f15&rfr_iscdi=true |