Road Object Detection Using a Disparity-Based Fusion Model

Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.19654-19663
Hauptverfasser: Chen, Jing, Xu, Wenqiang, Peng, Weimin, Bu, Wanghui, Xing, Baixi, Liu, Geng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19663
container_issue
container_start_page 19654
container_title IEEE access
container_volume 6
creator Chen, Jing
Xu, Wenqiang
Peng, Weimin
Bu, Wanghui
Xing, Baixi
Liu, Geng
description Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes.
doi_str_mv 10.1109/ACCESS.2018.2825229
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455921869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8334544</ieee_id><doaj_id>oai_doaj_org_article_ea6147dfd293415c858b7faf7f534f15</doaj_id><sourcerecordid>2455921869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmEuUXcGniudj9mO7WGxZQEgyJyHkz3e6SNsjibjnw7y2WEOfyJm_mvZm8KBqRdExImj9PimK2Xo9pSuSYSgqU5jfRgJIsTxiw7PZffx8NQ2jSrmRHgRhEL58Oq3hVNka38dS0HdRuH29Cvd_GGE_rcEBft6fkFYOp4vkxnMcfrjK7x-jO4i6Y4QUfos189lW8J8vV26KYLBPNU9kmKEqtZcaYAAY8JxnPuEGmy0pwK1CjBKGJKavSMiACrDbWQIoo0JYEKHuIFr1v5bBRB19_oz8ph7X6I5zfKvRtrXdGGcwIF5WtaM44AS1BlsKiFRYYtwQ6r6fe6-Ddz9GEVjXu6Pfd-4pygJwSmeXdFuu3tHcheGOvV0mqzpmrPnN1zlxdMu9Uo15VG2OuCskYB87ZLxQbe94</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455921869</pqid></control><display><type>article</type><title>Road Object Detection Using a Disparity-Based Fusion Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Jing ; Xu, Wenqiang ; Peng, Weimin ; Bu, Wanghui ; Xing, Baixi ; Liu, Geng</creator><creatorcontrib>Chen, Jing ; Xu, Wenqiang ; Peng, Weimin ; Bu, Wanghui ; Xing, Baixi ; Liu, Geng</creatorcontrib><description>Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2825229</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Computational modeling ; disparity ; Feature extraction ; multi-scale pooling ; Object detection ; Object recognition ; Occlusion ; proposal ; Roads ; Solid modeling ; stereo vision ; Three dimensional models ; Two dimensional models</subject><ispartof>IEEE access, 2018-01, Vol.6, p.19654-19663</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</citedby><cites>FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</cites><orcidid>0000-0003-3127-8462 ; 0000-0003-3378-6719 ; 0000-0002-2486-2460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8334544$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Xu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Weimin</creatorcontrib><creatorcontrib>Bu, Wanghui</creatorcontrib><creatorcontrib>Xing, Baixi</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><title>Road Object Detection Using a Disparity-Based Fusion Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes.</description><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>disparity</subject><subject>Feature extraction</subject><subject>multi-scale pooling</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>proposal</subject><subject>Roads</subject><subject>Solid modeling</subject><subject>stereo vision</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQbYwmEuUXcGniudj9mO7WGxZQEgyJyHkz3e6SNsjibjnw7y2WEOfyJm_mvZm8KBqRdExImj9PimK2Xo9pSuSYSgqU5jfRgJIsTxiw7PZffx8NQ2jSrmRHgRhEL58Oq3hVNka38dS0HdRuH29Cvd_GGE_rcEBft6fkFYOp4vkxnMcfrjK7x-jO4i6Y4QUfos189lW8J8vV26KYLBPNU9kmKEqtZcaYAAY8JxnPuEGmy0pwK1CjBKGJKavSMiACrDbWQIoo0JYEKHuIFr1v5bBRB19_oz8ph7X6I5zfKvRtrXdGGcwIF5WtaM44AS1BlsKiFRYYtwQ6r6fe6-Ddz9GEVjXu6Pfd-4pygJwSmeXdFuu3tHcheGOvV0mqzpmrPnN1zlxdMu9Uo15VG2OuCskYB87ZLxQbe94</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chen, Jing</creator><creator>Xu, Wenqiang</creator><creator>Peng, Weimin</creator><creator>Bu, Wanghui</creator><creator>Xing, Baixi</creator><creator>Liu, Geng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3127-8462</orcidid><orcidid>https://orcid.org/0000-0003-3378-6719</orcidid><orcidid>https://orcid.org/0000-0002-2486-2460</orcidid></search><sort><creationdate>20180101</creationdate><title>Road Object Detection Using a Disparity-Based Fusion Model</title><author>Chen, Jing ; Xu, Wenqiang ; Peng, Weimin ; Bu, Wanghui ; Xing, Baixi ; Liu, Geng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a7bcc863375354916464ea3cbd74f7aca857c1ebdbf35175fcefe50aa7afb1523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>disparity</topic><topic>Feature extraction</topic><topic>multi-scale pooling</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>proposal</topic><topic>Roads</topic><topic>Solid modeling</topic><topic>stereo vision</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Xu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Weimin</creatorcontrib><creatorcontrib>Bu, Wanghui</creatorcontrib><creatorcontrib>Xing, Baixi</creatorcontrib><creatorcontrib>Liu, Geng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jing</au><au>Xu, Wenqiang</au><au>Peng, Weimin</au><au>Bu, Wanghui</au><au>Xing, Baixi</au><au>Liu, Geng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Road Object Detection Using a Disparity-Based Fusion Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>19654</spage><epage>19663</epage><pages>19654-19663</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Detection methods based on 2-D images tend to extract the color, texture, shape, and other appearance features of objects. However, in complex scenes, the detection results using these methods are often influenced by shadows, occlusion, and resolution. In this paper, a disparity-proposal-based detection method that rapidly extracts candidate frames of the detection objects on the basis of stereo disparity and ensures the robustness of the candidate frames under different perturbations is proposed. Furthermore, depth information is used to construct multi-scale pooling layers, allowing objects of different sizes to activate different layers at different levels. The detection model incorporates 2-D image features and 3-D geometric features and overcomes the limitations of the 2-D detection methods (absence of depth information) by using disparity features. Based on the experimental results, this method effectively achieves on-road object detection in complex scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2825229</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3127-8462</orcidid><orcidid>https://orcid.org/0000-0003-3378-6719</orcidid><orcidid>https://orcid.org/0000-0002-2486-2460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.19654-19663
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455921869
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation models
Computational modeling
disparity
Feature extraction
multi-scale pooling
Object detection
Object recognition
Occlusion
proposal
Roads
Solid modeling
stereo vision
Three dimensional models
Two dimensional models
title Road Object Detection Using a Disparity-Based Fusion Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Road%20Object%20Detection%20Using%20a%20Disparity-Based%20Fusion%20Model&rft.jtitle=IEEE%20access&rft.au=Chen,%20Jing&rft.date=2018-01-01&rft.volume=6&rft.spage=19654&rft.epage=19663&rft.pages=19654-19663&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2825229&rft_dat=%3Cproquest_doaj_%3E2455921869%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455921869&rft_id=info:pmid/&rft_ieee_id=8334544&rft_doaj_id=oai_doaj_org_article_ea6147dfd293415c858b7faf7f534f15&rfr_iscdi=true