A New Algorithm for Indoor RSSI Radio Map Reconstruction

This paper proposes an empirical model of RSSI radio map in order to improve the indoor positioning accuracy of Wi-Fi RSSI. First, the signal feature point in RSSI space is proposed based on the indoor RSSI map, which is similar to the geomorphic feature point in a topographic map. Then, we utilize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018, Vol.6, p.76118-76125
Hauptverfasser: Xue, Weixing, Li, Qingquan, Hua, Xianghong, Yu, Kegen, Qiu, Weining, Zhou, Baoding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76125
container_issue
container_start_page 76118
container_title IEEE access
container_volume 6
creator Xue, Weixing
Li, Qingquan
Hua, Xianghong
Yu, Kegen
Qiu, Weining
Zhou, Baoding
description This paper proposes an empirical model of RSSI radio map in order to improve the indoor positioning accuracy of Wi-Fi RSSI. First, the signal feature point in RSSI space is proposed based on the indoor RSSI map, which is similar to the geomorphic feature point in a topographic map. Then, we utilize a small amount of the grid points in geometric space to fill the RSSI grid network by using the theory of low rank matrix. Finally, a new algorithm for indoor RSSI radio map reconstruction has been proposed. Both the grid point in geometric space and the signal feature point in RSSI space have been utilized in the reconstruction of the RSSI empirical model, and different types of feature points have been weighted based on their corresponding positioning accuracy. The proposed algorithm was tested by experiments conducted within a room, and the results indicate that the proposed method significantly outperforms the traditional grid network algorithm.
doi_str_mv 10.1109/ACCESS.2018.2882379
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455913585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8543591</ieee_id><doaj_id>oai_doaj_org_article_4746fb86496f40cb9f360e356d544155</doaj_id><sourcerecordid>2455913585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3239-d0b50f270f1882120d9b0ced121ca46b438a3196576d3779600899c0f12a77433</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-73xzGEqoGq0Oh52exuakrbrZsU8d-7MaX4Lu8xzMwbJknmECwgBPIhL4plVS0QgGKBhECYy6tkgiCTGaaYXf-7b5NZ121BHBEhyieJyNNX953mu40Pbf-5Txsf0vJgfVzrqirTtbatT1_0MV074w9dH06mb_3hLrlp9K5zs_OeJh-Py_fiOVu9PZVFvsoMRlhmFtQUNIiDBsZoEAEra2CchQgaTVhNsNAYSkY5s5hzyWI0KU2kI805wXialKOv9XqrjqHd6_CjvG7VH-DDRunQt2bnFOGENbVgRLKGAFPLBjPgMGWWEgIpjV73o9cx-K-T63q19adwiPEVIpRKiKkYWHhkmeC7Lrjm8hUCNTSuxsbV0Lg6Nx5V81HVOucuCkEJHnx_AQW6d7I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455913585</pqid></control><display><type>article</type><title>A New Algorithm for Indoor RSSI Radio Map Reconstruction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xue, Weixing ; Li, Qingquan ; Hua, Xianghong ; Yu, Kegen ; Qiu, Weining ; Zhou, Baoding</creator><creatorcontrib>Xue, Weixing ; Li, Qingquan ; Hua, Xianghong ; Yu, Kegen ; Qiu, Weining ; Zhou, Baoding</creatorcontrib><description>This paper proposes an empirical model of RSSI radio map in order to improve the indoor positioning accuracy of Wi-Fi RSSI. First, the signal feature point in RSSI space is proposed based on the indoor RSSI map, which is similar to the geomorphic feature point in a topographic map. Then, we utilize a small amount of the grid points in geometric space to fill the RSSI grid network by using the theory of low rank matrix. Finally, a new algorithm for indoor RSSI radio map reconstruction has been proposed. Both the grid point in geometric space and the signal feature point in RSSI space have been utilized in the reconstruction of the RSSI empirical model, and different types of feature points have been weighted based on their corresponding positioning accuracy. The proposed algorithm was tested by experiments conducted within a room, and the results indicate that the proposed method significantly outperforms the traditional grid network algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2882379</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Empirical model ; Fingerprint recognition ; Geomorphology ; Matrix decomposition ; Radio ; Reconstruction ; RSSI radio map ; Sensors ; Sparse matrices ; the grid point ; the signal feature point ; Topographic maps ; Wireless fidelity</subject><ispartof>IEEE access, 2018, Vol.6, p.76118-76125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3239-d0b50f270f1882120d9b0ced121ca46b438a3196576d3779600899c0f12a77433</citedby><cites>FETCH-LOGICAL-c3239-d0b50f270f1882120d9b0ced121ca46b438a3196576d3779600899c0f12a77433</cites><orcidid>0000-0003-4134-8313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8543591$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xue, Weixing</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Hua, Xianghong</creatorcontrib><creatorcontrib>Yu, Kegen</creatorcontrib><creatorcontrib>Qiu, Weining</creatorcontrib><creatorcontrib>Zhou, Baoding</creatorcontrib><title>A New Algorithm for Indoor RSSI Radio Map Reconstruction</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes an empirical model of RSSI radio map in order to improve the indoor positioning accuracy of Wi-Fi RSSI. First, the signal feature point in RSSI space is proposed based on the indoor RSSI map, which is similar to the geomorphic feature point in a topographic map. Then, we utilize a small amount of the grid points in geometric space to fill the RSSI grid network by using the theory of low rank matrix. Finally, a new algorithm for indoor RSSI radio map reconstruction has been proposed. Both the grid point in geometric space and the signal feature point in RSSI space have been utilized in the reconstruction of the RSSI empirical model, and different types of feature points have been weighted based on their corresponding positioning accuracy. The proposed algorithm was tested by experiments conducted within a room, and the results indicate that the proposed method significantly outperforms the traditional grid network algorithm.</description><subject>Algorithms</subject><subject>Empirical model</subject><subject>Fingerprint recognition</subject><subject>Geomorphology</subject><subject>Matrix decomposition</subject><subject>Radio</subject><subject>Reconstruction</subject><subject>RSSI radio map</subject><subject>Sensors</subject><subject>Sparse matrices</subject><subject>the grid point</subject><subject>the signal feature point</subject><subject>Topographic maps</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-73xzGEqoGq0Oh52exuakrbrZsU8d-7MaX4Lu8xzMwbJknmECwgBPIhL4plVS0QgGKBhECYy6tkgiCTGaaYXf-7b5NZ121BHBEhyieJyNNX953mu40Pbf-5Txsf0vJgfVzrqirTtbatT1_0MV074w9dH06mb_3hLrlp9K5zs_OeJh-Py_fiOVu9PZVFvsoMRlhmFtQUNIiDBsZoEAEra2CchQgaTVhNsNAYSkY5s5hzyWI0KU2kI805wXialKOv9XqrjqHd6_CjvG7VH-DDRunQt2bnFOGENbVgRLKGAFPLBjPgMGWWEgIpjV73o9cx-K-T63q19adwiPEVIpRKiKkYWHhkmeC7Lrjm8hUCNTSuxsbV0Lg6Nx5V81HVOucuCkEJHnx_AQW6d7I</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Xue, Weixing</creator><creator>Li, Qingquan</creator><creator>Hua, Xianghong</creator><creator>Yu, Kegen</creator><creator>Qiu, Weining</creator><creator>Zhou, Baoding</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4134-8313</orcidid></search><sort><creationdate>2018</creationdate><title>A New Algorithm for Indoor RSSI Radio Map Reconstruction</title><author>Xue, Weixing ; Li, Qingquan ; Hua, Xianghong ; Yu, Kegen ; Qiu, Weining ; Zhou, Baoding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3239-d0b50f270f1882120d9b0ced121ca46b438a3196576d3779600899c0f12a77433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Empirical model</topic><topic>Fingerprint recognition</topic><topic>Geomorphology</topic><topic>Matrix decomposition</topic><topic>Radio</topic><topic>Reconstruction</topic><topic>RSSI radio map</topic><topic>Sensors</topic><topic>Sparse matrices</topic><topic>the grid point</topic><topic>the signal feature point</topic><topic>Topographic maps</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Weixing</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Hua, Xianghong</creatorcontrib><creatorcontrib>Yu, Kegen</creatorcontrib><creatorcontrib>Qiu, Weining</creatorcontrib><creatorcontrib>Zhou, Baoding</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Weixing</au><au>Li, Qingquan</au><au>Hua, Xianghong</au><au>Yu, Kegen</au><au>Qiu, Weining</au><au>Zhou, Baoding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Algorithm for Indoor RSSI Radio Map Reconstruction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>76118</spage><epage>76125</epage><pages>76118-76125</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes an empirical model of RSSI radio map in order to improve the indoor positioning accuracy of Wi-Fi RSSI. First, the signal feature point in RSSI space is proposed based on the indoor RSSI map, which is similar to the geomorphic feature point in a topographic map. Then, we utilize a small amount of the grid points in geometric space to fill the RSSI grid network by using the theory of low rank matrix. Finally, a new algorithm for indoor RSSI radio map reconstruction has been proposed. Both the grid point in geometric space and the signal feature point in RSSI space have been utilized in the reconstruction of the RSSI empirical model, and different types of feature points have been weighted based on their corresponding positioning accuracy. The proposed algorithm was tested by experiments conducted within a room, and the results indicate that the proposed method significantly outperforms the traditional grid network algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2882379</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4134-8313</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.76118-76125
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455913585
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Empirical model
Fingerprint recognition
Geomorphology
Matrix decomposition
Radio
Reconstruction
RSSI radio map
Sensors
Sparse matrices
the grid point
the signal feature point
Topographic maps
Wireless fidelity
title A New Algorithm for Indoor RSSI Radio Map Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Algorithm%20for%20Indoor%20RSSI%20Radio%20Map%20Reconstruction&rft.jtitle=IEEE%20access&rft.au=Xue,%20Weixing&rft.date=2018&rft.volume=6&rft.spage=76118&rft.epage=76125&rft.pages=76118-76125&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2882379&rft_dat=%3Cproquest_ieee_%3E2455913585%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455913585&rft_id=info:pmid/&rft_ieee_id=8543591&rft_doaj_id=oai_doaj_org_article_4746fb86496f40cb9f360e356d544155&rfr_iscdi=true