Improved Cross-Label Suppression Dictionary Learning for Face Recognition
Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.48716-48725 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48725 |
---|---|
container_issue | |
container_start_page | 48716 |
container_title | IEEE access |
container_volume | 6 |
creator | Zhou, Tian Yang, Sujuan Wang, Lei Yao, Jiming Gui, Guan |
description | Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process. |
doi_str_mv | 10.1109/ACCESS.2018.2868133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455909471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452894</ieee_id><doaj_id>oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d</doaj_id><sourcerecordid>2455909471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</originalsourceid><addsrcrecordid>eNpNUU1rAjEQDaWFivUXeFnoeW2-zR5lq-2CUKjtOSRxIiu6sdm10H_fbFekc5lheO_lZR5CU4JnhODiaVGWy81mRjFRM6qkIozdoBElssiZYPL233yPJm27x6lUWon5CFXV8RTDN2yzMoa2zdfGwiHbnE-nCG1bhyZ7rl2Xuok_2RpMbOpml_kQs5VxkL2DC7um7gEP6M6bQwuTSx-jz9Xyo3zN128vVblY545j1eXSFXwujRWMggXOrMRUMuLAS1twJwowSlBhcCEds8Rz5bc8Ma1UFMPcsTGqBt1tMHt9ivUxWdPB1PpvEeJOm9jV7gCaWwrKSeKxkVxYa0z6NfN-LplJPrZJ63HQSjf4OkPb6X04xybZ15QLUeDklSQUG1CuP1EEf32VYN1HoIcIdB-BvkSQWNOBVQPAlaG4oKrg7BdlcoGl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455909471</pqid></control><display><type>article</type><title>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Tian ; Yang, Sujuan ; Wang, Lei ; Yao, Jiming ; Gui, Guan</creator><creatorcontrib>Zhou, Tian ; Yang, Sujuan ; Wang, Lei ; Yao, Jiming ; Gui, Guan</creatorcontrib><description>Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2868133</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; compressive sensing ; computational complexity ; Computational modeling ; Computing costs ; Cross-label suppression ; Dictionaries ; dictionary learning ; Face recognition ; Machine learning ; Representations ; Signal reconstruction ; Time complexity ; Training</subject><ispartof>IEEE access, 2018-01, Vol.6, p.48716-48725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</citedby><cites>FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</cites><orcidid>0000-0003-3888-2881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Sujuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yao, Jiming</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><title>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.</description><subject>Algorithms</subject><subject>compressive sensing</subject><subject>computational complexity</subject><subject>Computational modeling</subject><subject>Computing costs</subject><subject>Cross-label suppression</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Face recognition</subject><subject>Machine learning</subject><subject>Representations</subject><subject>Signal reconstruction</subject><subject>Time complexity</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rAjEQDaWFivUXeFnoeW2-zR5lq-2CUKjtOSRxIiu6sdm10H_fbFekc5lheO_lZR5CU4JnhODiaVGWy81mRjFRM6qkIozdoBElssiZYPL233yPJm27x6lUWon5CFXV8RTDN2yzMoa2zdfGwiHbnE-nCG1bhyZ7rl2Xuok_2RpMbOpml_kQs5VxkL2DC7um7gEP6M6bQwuTSx-jz9Xyo3zN128vVblY545j1eXSFXwujRWMggXOrMRUMuLAS1twJwowSlBhcCEds8Rz5bc8Ma1UFMPcsTGqBt1tMHt9ivUxWdPB1PpvEeJOm9jV7gCaWwrKSeKxkVxYa0z6NfN-LplJPrZJ63HQSjf4OkPb6X04xybZ15QLUeDklSQUG1CuP1EEf32VYN1HoIcIdB-BvkSQWNOBVQPAlaG4oKrg7BdlcoGl</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhou, Tian</creator><creator>Yang, Sujuan</creator><creator>Wang, Lei</creator><creator>Yao, Jiming</creator><creator>Gui, Guan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid></search><sort><creationdate>20180101</creationdate><title>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</title><author>Zhou, Tian ; Yang, Sujuan ; Wang, Lei ; Yao, Jiming ; Gui, Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>compressive sensing</topic><topic>computational complexity</topic><topic>Computational modeling</topic><topic>Computing costs</topic><topic>Cross-label suppression</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Face recognition</topic><topic>Machine learning</topic><topic>Representations</topic><topic>Signal reconstruction</topic><topic>Time complexity</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Sujuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yao, Jiming</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Tian</au><au>Yang, Sujuan</au><au>Wang, Lei</au><au>Yao, Jiming</au><au>Gui, Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>48716</spage><epage>48725</epage><pages>48716-48725</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2868133</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.48716-48725 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455909471 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms compressive sensing computational complexity Computational modeling Computing costs Cross-label suppression Dictionaries dictionary learning Face recognition Machine learning Representations Signal reconstruction Time complexity Training |
title | Improved Cross-Label Suppression Dictionary Learning for Face Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Cross-Label%20Suppression%20Dictionary%20Learning%20for%20Face%20Recognition&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Tian&rft.date=2018-01-01&rft.volume=6&rft.spage=48716&rft.epage=48725&rft.pages=48716-48725&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2868133&rft_dat=%3Cproquest_doaj_%3E2455909471%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455909471&rft_id=info:pmid/&rft_ieee_id=8452894&rft_doaj_id=oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d&rfr_iscdi=true |