Improved Cross-Label Suppression Dictionary Learning for Face Recognition

Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.48716-48725
Hauptverfasser: Zhou, Tian, Yang, Sujuan, Wang, Lei, Yao, Jiming, Gui, Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48725
container_issue
container_start_page 48716
container_title IEEE access
container_volume 6
creator Zhou, Tian
Yang, Sujuan
Wang, Lei
Yao, Jiming
Gui, Guan
description Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.
doi_str_mv 10.1109/ACCESS.2018.2868133
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455909471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452894</ieee_id><doaj_id>oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d</doaj_id><sourcerecordid>2455909471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</originalsourceid><addsrcrecordid>eNpNUU1rAjEQDaWFivUXeFnoeW2-zR5lq-2CUKjtOSRxIiu6sdm10H_fbFekc5lheO_lZR5CU4JnhODiaVGWy81mRjFRM6qkIozdoBElssiZYPL233yPJm27x6lUWon5CFXV8RTDN2yzMoa2zdfGwiHbnE-nCG1bhyZ7rl2Xuok_2RpMbOpml_kQs5VxkL2DC7um7gEP6M6bQwuTSx-jz9Xyo3zN128vVblY545j1eXSFXwujRWMggXOrMRUMuLAS1twJwowSlBhcCEds8Rz5bc8Ma1UFMPcsTGqBt1tMHt9ivUxWdPB1PpvEeJOm9jV7gCaWwrKSeKxkVxYa0z6NfN-LplJPrZJ63HQSjf4OkPb6X04xybZ15QLUeDklSQUG1CuP1EEf32VYN1HoIcIdB-BvkSQWNOBVQPAlaG4oKrg7BdlcoGl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455909471</pqid></control><display><type>article</type><title>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Tian ; Yang, Sujuan ; Wang, Lei ; Yao, Jiming ; Gui, Guan</creator><creatorcontrib>Zhou, Tian ; Yang, Sujuan ; Wang, Lei ; Yao, Jiming ; Gui, Guan</creatorcontrib><description>Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2868133</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; compressive sensing ; computational complexity ; Computational modeling ; Computing costs ; Cross-label suppression ; Dictionaries ; dictionary learning ; Face recognition ; Machine learning ; Representations ; Signal reconstruction ; Time complexity ; Training</subject><ispartof>IEEE access, 2018-01, Vol.6, p.48716-48725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</citedby><cites>FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</cites><orcidid>0000-0003-3888-2881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Sujuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yao, Jiming</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><title>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.</description><subject>Algorithms</subject><subject>compressive sensing</subject><subject>computational complexity</subject><subject>Computational modeling</subject><subject>Computing costs</subject><subject>Cross-label suppression</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Face recognition</subject><subject>Machine learning</subject><subject>Representations</subject><subject>Signal reconstruction</subject><subject>Time complexity</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rAjEQDaWFivUXeFnoeW2-zR5lq-2CUKjtOSRxIiu6sdm10H_fbFekc5lheO_lZR5CU4JnhODiaVGWy81mRjFRM6qkIozdoBElssiZYPL233yPJm27x6lUWon5CFXV8RTDN2yzMoa2zdfGwiHbnE-nCG1bhyZ7rl2Xuok_2RpMbOpml_kQs5VxkL2DC7um7gEP6M6bQwuTSx-jz9Xyo3zN128vVblY545j1eXSFXwujRWMggXOrMRUMuLAS1twJwowSlBhcCEds8Rz5bc8Ma1UFMPcsTGqBt1tMHt9ivUxWdPB1PpvEeJOm9jV7gCaWwrKSeKxkVxYa0z6NfN-LplJPrZJ63HQSjf4OkPb6X04xybZ15QLUeDklSQUG1CuP1EEf32VYN1HoIcIdB-BvkSQWNOBVQPAlaG4oKrg7BdlcoGl</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhou, Tian</creator><creator>Yang, Sujuan</creator><creator>Wang, Lei</creator><creator>Yao, Jiming</creator><creator>Gui, Guan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid></search><sort><creationdate>20180101</creationdate><title>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</title><author>Zhou, Tian ; Yang, Sujuan ; Wang, Lei ; Yao, Jiming ; Gui, Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6c9476ab532ebe43b602631cef6b94c59ea8525a096c3b1f48fd4408b6820e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>compressive sensing</topic><topic>computational complexity</topic><topic>Computational modeling</topic><topic>Computing costs</topic><topic>Cross-label suppression</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Face recognition</topic><topic>Machine learning</topic><topic>Representations</topic><topic>Signal reconstruction</topic><topic>Time complexity</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Sujuan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yao, Jiming</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Tian</au><au>Yang, Sujuan</au><au>Wang, Lei</au><au>Yao, Jiming</au><au>Gui, Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Cross-Label Suppression Dictionary Learning for Face Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>48716</spage><epage>48725</epage><pages>48716-48725</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cross-label suppression dictionary learning is an effective approach to preserve the label property for signal representation in face recognition. This paper presents a proposed improved dictionary learning algorithm, considering the tradeoffs between the operating time and the signal reconstruction residuals for the face recognition problem that combines an optimal loss function and the cross-label suppression supervised dictionary learning approach. Based on the relationship of the cost time of the dictionary learning algorithm and the residuals of the sparse representations, this paper attempts to select an optimal sparse coding dimension for the original signal to reduce the computational cost. Experiments on face recognition confirm that our proposed algorithm is able to achieve a desired classification results as well as obtain a considerably faster dictionary learning process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2868133</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.48716-48725
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455909471
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
compressive sensing
computational complexity
Computational modeling
Computing costs
Cross-label suppression
Dictionaries
dictionary learning
Face recognition
Machine learning
Representations
Signal reconstruction
Time complexity
Training
title Improved Cross-Label Suppression Dictionary Learning for Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Cross-Label%20Suppression%20Dictionary%20Learning%20for%20Face%20Recognition&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Tian&rft.date=2018-01-01&rft.volume=6&rft.spage=48716&rft.epage=48725&rft.pages=48716-48725&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2868133&rft_dat=%3Cproquest_doaj_%3E2455909471%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455909471&rft_id=info:pmid/&rft_ieee_id=8452894&rft_doaj_id=oai_doaj_org_article_4b2e8c61f0a645bbaa1693ff763a6c9d&rfr_iscdi=true