Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection

Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.33789-33795
Hauptverfasser: Ahmad, Iftikhar, Basheri, Mohammad, Iqbal, Muhammad Javed, Rahim, Aneel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33795
container_issue
container_start_page 33789
container_title IEEE access
container_volume 6
creator Ahmad, Iftikhar
Basheri, Mohammad
Iqbal, Muhammad Javed
Rahim, Aneel
description Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches.
doi_str_mv 10.1109/ACCESS.2018.2841987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455899703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8369054</ieee_id><doaj_id>oai_doaj_org_article_d1a60b7c4dbf41c08cb03db89a66d5a4</doaj_id><sourcerecordid>2455899703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKOon8BLw6q751zQ5Sl11YUVx1WtI06l2sU2dtqDf3qxVMZfMDO_9JuElyQmjc8aoOb_I88V6PeeU6TnXkhmd7SQHnCkzE6lQu__q_eS47zc0Hh1HaXaQjPeAVcDGtR5IHprOYd2HloSKrMeuCziQZ_BDQHLr_Gvdwhl5cG0ZGnIVEPrhjMSOLD4GhAbIChy2dfvyKyYRTZbtgGNfR-glDJEVq6Nkr3JvPRz_3IfJ09XiMb-Zre6ul_nFauZlJodZmXqhM2Ookd7L0rAs88CVYaoowVDJgRXAqa-YcRzAKKcLw71UoFQFwonDZDlxy-A2tsO6cfhpg6vt9yDgi3U41P4NbMmcokUW1xSVZJ5qX1BRFto4pcrUycg6nVgdhvcxft1uwohtfL7lMk21MRkVUSUmlcfQ9wjV31ZG7TYuO8Vlt3HZn7ii62Ry1QDw59BCGZpK8QX56ZIq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455899703</pqid></control><display><type>article</type><title>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahmad, Iftikhar ; Basheri, Mohammad ; Iqbal, Muhammad Javed ; Rahim, Aneel</creator><creatorcontrib>Ahmad, Iftikhar ; Basheri, Mohammad ; Iqbal, Muhammad Javed ; Rahim, Aneel</creatorcontrib><description>Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2841987</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive systems ; Artificial neural networks ; Classification ; Data mining ; Datasets ; Detection rate ; extreme learning machine ; False alarms ; Firewalls ; Forestry ; Intrusion detection ; Intrusion detection systems ; Kernel ; Machine learning ; Multilayer perceptrons ; NSL–KDD ; Radio frequency ; random forest ; Security ; Security management ; support vector machine ; Support vector machines ; Traffic information ; Training</subject><ispartof>IEEE access, 2018-01, Vol.6, p.33789-33795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</citedby><cites>FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</cites><orcidid>0000-0002-3439-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8369054$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Basheri, Mohammad</creatorcontrib><creatorcontrib>Iqbal, Muhammad Javed</creatorcontrib><creatorcontrib>Rahim, Aneel</creatorcontrib><title>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Detection rate</subject><subject>extreme learning machine</subject><subject>False alarms</subject><subject>Firewalls</subject><subject>Forestry</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>NSL–KDD</subject><subject>Radio frequency</subject><subject>random forest</subject><subject>Security</subject><subject>Security management</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Traffic information</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LxDAQxYsoKOon8BLw6q751zQ5Sl11YUVx1WtI06l2sU2dtqDf3qxVMZfMDO_9JuElyQmjc8aoOb_I88V6PeeU6TnXkhmd7SQHnCkzE6lQu__q_eS47zc0Hh1HaXaQjPeAVcDGtR5IHprOYd2HloSKrMeuCziQZ_BDQHLr_Gvdwhl5cG0ZGnIVEPrhjMSOLD4GhAbIChy2dfvyKyYRTZbtgGNfR-glDJEVq6Nkr3JvPRz_3IfJ09XiMb-Zre6ul_nFauZlJodZmXqhM2Ookd7L0rAs88CVYaoowVDJgRXAqa-YcRzAKKcLw71UoFQFwonDZDlxy-A2tsO6cfhpg6vt9yDgi3U41P4NbMmcokUW1xSVZJ5qX1BRFto4pcrUycg6nVgdhvcxft1uwohtfL7lMk21MRkVUSUmlcfQ9wjV31ZG7TYuO8Vlt3HZn7ii62Ry1QDw59BCGZpK8QX56ZIq</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ahmad, Iftikhar</creator><creator>Basheri, Mohammad</creator><creator>Iqbal, Muhammad Javed</creator><creator>Rahim, Aneel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3439-3549</orcidid></search><sort><creationdate>20180101</creationdate><title>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</title><author>Ahmad, Iftikhar ; Basheri, Mohammad ; Iqbal, Muhammad Javed ; Rahim, Aneel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Detection rate</topic><topic>extreme learning machine</topic><topic>False alarms</topic><topic>Firewalls</topic><topic>Forestry</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>NSL–KDD</topic><topic>Radio frequency</topic><topic>random forest</topic><topic>Security</topic><topic>Security management</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Traffic information</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Basheri, Mohammad</creatorcontrib><creatorcontrib>Iqbal, Muhammad Javed</creatorcontrib><creatorcontrib>Rahim, Aneel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Iftikhar</au><au>Basheri, Mohammad</au><au>Iqbal, Muhammad Javed</au><au>Rahim, Aneel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>33789</spage><epage>33795</epage><pages>33789-33795</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2841987</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3439-3549</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.33789-33795
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455899703
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive systems
Artificial neural networks
Classification
Data mining
Datasets
Detection rate
extreme learning machine
False alarms
Firewalls
Forestry
Intrusion detection
Intrusion detection systems
Kernel
Machine learning
Multilayer perceptrons
NSL–KDD
Radio frequency
random forest
Security
Security management
support vector machine
Support vector machines
Traffic information
Training
title Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Comparison%20of%20Support%20Vector%20Machine,%20Random%20Forest,%20and%20Extreme%20Learning%20Machine%20for%20Intrusion%20Detection&rft.jtitle=IEEE%20access&rft.au=Ahmad,%20Iftikhar&rft.date=2018-01-01&rft.volume=6&rft.spage=33789&rft.epage=33795&rft.pages=33789-33795&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2841987&rft_dat=%3Cproquest_cross%3E2455899703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455899703&rft_id=info:pmid/&rft_ieee_id=8369054&rft_doaj_id=oai_doaj_org_article_d1a60b7c4dbf41c08cb03db89a66d5a4&rfr_iscdi=true