Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection
Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.33789-33795 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33795 |
---|---|
container_issue | |
container_start_page | 33789 |
container_title | IEEE access |
container_volume | 6 |
creator | Ahmad, Iftikhar Basheri, Mohammad Iqbal, Muhammad Javed Rahim, Aneel |
description | Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches. |
doi_str_mv | 10.1109/ACCESS.2018.2841987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455899703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8369054</ieee_id><doaj_id>oai_doaj_org_article_d1a60b7c4dbf41c08cb03db89a66d5a4</doaj_id><sourcerecordid>2455899703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKOon8BLw6q751zQ5Sl11YUVx1WtI06l2sU2dtqDf3qxVMZfMDO_9JuElyQmjc8aoOb_I88V6PeeU6TnXkhmd7SQHnCkzE6lQu__q_eS47zc0Hh1HaXaQjPeAVcDGtR5IHprOYd2HloSKrMeuCziQZ_BDQHLr_Gvdwhl5cG0ZGnIVEPrhjMSOLD4GhAbIChy2dfvyKyYRTZbtgGNfR-glDJEVq6Nkr3JvPRz_3IfJ09XiMb-Zre6ul_nFauZlJodZmXqhM2Ookd7L0rAs88CVYaoowVDJgRXAqa-YcRzAKKcLw71UoFQFwonDZDlxy-A2tsO6cfhpg6vt9yDgi3U41P4NbMmcokUW1xSVZJ5qX1BRFto4pcrUycg6nVgdhvcxft1uwohtfL7lMk21MRkVUSUmlcfQ9wjV31ZG7TYuO8Vlt3HZn7ii62Ry1QDw59BCGZpK8QX56ZIq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455899703</pqid></control><display><type>article</type><title>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahmad, Iftikhar ; Basheri, Mohammad ; Iqbal, Muhammad Javed ; Rahim, Aneel</creator><creatorcontrib>Ahmad, Iftikhar ; Basheri, Mohammad ; Iqbal, Muhammad Javed ; Rahim, Aneel</creatorcontrib><description>Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2841987</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive systems ; Artificial neural networks ; Classification ; Data mining ; Datasets ; Detection rate ; extreme learning machine ; False alarms ; Firewalls ; Forestry ; Intrusion detection ; Intrusion detection systems ; Kernel ; Machine learning ; Multilayer perceptrons ; NSL–KDD ; Radio frequency ; random forest ; Security ; Security management ; support vector machine ; Support vector machines ; Traffic information ; Training</subject><ispartof>IEEE access, 2018-01, Vol.6, p.33789-33795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</citedby><cites>FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</cites><orcidid>0000-0002-3439-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8369054$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Basheri, Mohammad</creatorcontrib><creatorcontrib>Iqbal, Muhammad Javed</creatorcontrib><creatorcontrib>Rahim, Aneel</creatorcontrib><title>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Detection rate</subject><subject>extreme learning machine</subject><subject>False alarms</subject><subject>Firewalls</subject><subject>Forestry</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>NSL–KDD</subject><subject>Radio frequency</subject><subject>random forest</subject><subject>Security</subject><subject>Security management</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Traffic information</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LxDAQxYsoKOon8BLw6q751zQ5Sl11YUVx1WtI06l2sU2dtqDf3qxVMZfMDO_9JuElyQmjc8aoOb_I88V6PeeU6TnXkhmd7SQHnCkzE6lQu__q_eS47zc0Hh1HaXaQjPeAVcDGtR5IHprOYd2HloSKrMeuCziQZ_BDQHLr_Gvdwhl5cG0ZGnIVEPrhjMSOLD4GhAbIChy2dfvyKyYRTZbtgGNfR-glDJEVq6Nkr3JvPRz_3IfJ09XiMb-Zre6ul_nFauZlJodZmXqhM2Ookd7L0rAs88CVYaoowVDJgRXAqa-YcRzAKKcLw71UoFQFwonDZDlxy-A2tsO6cfhpg6vt9yDgi3U41P4NbMmcokUW1xSVZJ5qX1BRFto4pcrUycg6nVgdhvcxft1uwohtfL7lMk21MRkVUSUmlcfQ9wjV31ZG7TYuO8Vlt3HZn7ii62Ry1QDw59BCGZpK8QX56ZIq</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ahmad, Iftikhar</creator><creator>Basheri, Mohammad</creator><creator>Iqbal, Muhammad Javed</creator><creator>Rahim, Aneel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3439-3549</orcidid></search><sort><creationdate>20180101</creationdate><title>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</title><author>Ahmad, Iftikhar ; Basheri, Mohammad ; Iqbal, Muhammad Javed ; Rahim, Aneel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d5c38799094cc4d9177ce26916bde9042e1be20cf19a2ee96a8b92c46e66fe3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Detection rate</topic><topic>extreme learning machine</topic><topic>False alarms</topic><topic>Firewalls</topic><topic>Forestry</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>NSL–KDD</topic><topic>Radio frequency</topic><topic>random forest</topic><topic>Security</topic><topic>Security management</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Traffic information</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Basheri, Mohammad</creatorcontrib><creatorcontrib>Iqbal, Muhammad Javed</creatorcontrib><creatorcontrib>Rahim, Aneel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Iftikhar</au><au>Basheri, Mohammad</au><au>Iqbal, Muhammad Javed</au><au>Rahim, Aneel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>33789</spage><epage>33795</epage><pages>33789-33795</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Intrusion detection is a fundamental part of security tools, such as adaptive security appliances, intrusion detection systems, intrusion prevention systems, and firewalls. Various intrusion detection techniques are used, but their performance is an issue. Intrusion detection performance depends on accuracy, which needs to improve to decrease false alarms and to increase the detection rate. To resolve concerns on performance, multilayer perceptron, support vector machine (SVM), and other techniques have been used in recent work. Such techniques indicate limitations and are not efficient for use in large data sets, such as system and network data. The intrusion detection system is used in analyzing huge traffic data; thus, an efficient classification technique is necessary to overcome the issue. This problem is considered in this paper. Well-known machine learning techniques, namely, SVM, random forest, and extreme learning machine (ELM) are applied. These techniques are well-known because of their capability in classification. The NSL-knowledge discovery and data mining data set is used, which is considered a benchmark in the evaluation of intrusion detection mechanisms. The results indicate that ELM outperforms other approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2841987</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3439-3549</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.33789-33795 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455899703 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive systems Artificial neural networks Classification Data mining Datasets Detection rate extreme learning machine False alarms Firewalls Forestry Intrusion detection Intrusion detection systems Kernel Machine learning Multilayer perceptrons NSL–KDD Radio frequency random forest Security Security management support vector machine Support vector machines Traffic information Training |
title | Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Comparison%20of%20Support%20Vector%20Machine,%20Random%20Forest,%20and%20Extreme%20Learning%20Machine%20for%20Intrusion%20Detection&rft.jtitle=IEEE%20access&rft.au=Ahmad,%20Iftikhar&rft.date=2018-01-01&rft.volume=6&rft.spage=33789&rft.epage=33795&rft.pages=33789-33795&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2841987&rft_dat=%3Cproquest_cross%3E2455899703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455899703&rft_id=info:pmid/&rft_ieee_id=8369054&rft_doaj_id=oai_doaj_org_article_d1a60b7c4dbf41c08cb03db89a66d5a4&rfr_iscdi=true |