A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator
When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. T...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.1167-1176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1176 |
---|---|
container_issue | |
container_start_page | 1167 |
container_title | IEEE access |
container_volume | 6 |
creator | Tong, Ling Li, Xiaogang Hu, Jinhai Ren, Litong |
description | When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time. |
doi_str_mv | 10.1109/ACCESS.2017.2778022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455898759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8123851</ieee_id><doaj_id>oai_doaj_org_article_ef95656a3ad041c0986600e66ab2e607</doaj_id><sourcerecordid>2455898759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUIDDWl-QS4LOa87-t49GpO2gRSXOqFHMZJnHZn1ytXKh_TXV-ma0DnMiMd7bzS8qrplsGAMus_L1ep-s1lwYGbBjWmB84vqijPdNUIJ_eG_98fqZpr2UKotkDJX1W5Z_9is6_Uxh0P4gznEsd54HKh5SjhOfUyHM5ijf8EpB9_8pCmOOHqql8MuppBfDvWv0gsHXRhCfq2_n_IsWx8pYY7pU3XZ4zDRzXleV89f7p9W35rH9deH1fKx8RLa3DjtmJc9Me578p47o0Eqz9EAd95xwzkI6TSg65iETqIATShIbrV2BsR19TD7biPu7TGFA6ZXGzHYf0BMO4upHDGQpb5TWmkUuAXJPHSt1gCkNTpOGkzxupu9jin-PtGU7T6e0li-b7lUqu1ao7rCEjPLpzhNifr3rQzsW0B2Dsi-BWTPARXV7awKRPSuaBkXrWLiLxvHjHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455898759</pqid></control><display><type>article</type><title>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tong, Ling ; Li, Xiaogang ; Hu, Jinhai ; Ren, Litong</creator><creatorcontrib>Tong, Ling ; Li, Xiaogang ; Hu, Jinhai ; Ren, Litong</creatorcontrib><description>When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2778022</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Fault detection ; Indexes ; Iterative algorithms ; Iterative methods ; Mutation ; Optimization ; Parameters ; Particle swarm optimization ; particle swarm optimization (PSO) ; Resonance ; Resonant frequency ; scale-transformation stochastic resonance ; signal processing ; Signal to noise ratio ; Stability analysis ; Stochastic resonance ; Systems stability ; Transformations ; Weight</subject><ispartof>IEEE access, 2018-01, Vol.6, p.1167-1176</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</citedby><cites>FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</cites><orcidid>0000-0002-7680-4115 ; 0000-0002-7087-7671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8123851$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Tong, Ling</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Hu, Jinhai</creatorcontrib><creatorcontrib>Ren, Litong</creatorcontrib><title>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</title><title>IEEE access</title><addtitle>Access</addtitle><description>When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Fault detection</subject><subject>Indexes</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>scale-transformation stochastic resonance</subject><subject>signal processing</subject><subject>Signal to noise ratio</subject><subject>Stability analysis</subject><subject>Stochastic resonance</subject><subject>Systems stability</subject><subject>Transformations</subject><subject>Weight</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUIDDWl-QS4LOa87-t49GpO2gRSXOqFHMZJnHZn1ytXKh_TXV-ma0DnMiMd7bzS8qrplsGAMus_L1ep-s1lwYGbBjWmB84vqijPdNUIJ_eG_98fqZpr2UKotkDJX1W5Z_9is6_Uxh0P4gznEsd54HKh5SjhOfUyHM5ijf8EpB9_8pCmOOHqql8MuppBfDvWv0gsHXRhCfq2_n_IsWx8pYY7pU3XZ4zDRzXleV89f7p9W35rH9deH1fKx8RLa3DjtmJc9Me578p47o0Eqz9EAd95xwzkI6TSg65iETqIATShIbrV2BsR19TD7biPu7TGFA6ZXGzHYf0BMO4upHDGQpb5TWmkUuAXJPHSt1gCkNTpOGkzxupu9jin-PtGU7T6e0li-b7lUqu1ao7rCEjPLpzhNifr3rQzsW0B2Dsi-BWTPARXV7awKRPSuaBkXrWLiLxvHjHw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Tong, Ling</creator><creator>Li, Xiaogang</creator><creator>Hu, Jinhai</creator><creator>Ren, Litong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7680-4115</orcidid><orcidid>https://orcid.org/0000-0002-7087-7671</orcidid></search><sort><creationdate>20180101</creationdate><title>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</title><author>Tong, Ling ; Li, Xiaogang ; Hu, Jinhai ; Ren, Litong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Fault detection</topic><topic>Indexes</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>scale-transformation stochastic resonance</topic><topic>signal processing</topic><topic>Signal to noise ratio</topic><topic>Stability analysis</topic><topic>Stochastic resonance</topic><topic>Systems stability</topic><topic>Transformations</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Ling</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Hu, Jinhai</creatorcontrib><creatorcontrib>Ren, Litong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Ling</au><au>Li, Xiaogang</au><au>Hu, Jinhai</au><au>Ren, Litong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>1167</spage><epage>1176</epage><pages>1167-1176</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2778022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7680-4115</orcidid><orcidid>https://orcid.org/0000-0002-7087-7671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.1167-1176 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455898759 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithm design and analysis Algorithms Fault detection Indexes Iterative algorithms Iterative methods Mutation Optimization Parameters Particle swarm optimization particle swarm optimization (PSO) Resonance Resonant frequency scale-transformation stochastic resonance signal processing Signal to noise ratio Stability analysis Stochastic resonance Systems stability Transformations Weight |
title | A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PSO%20Optimization%20Scale-Transformation%20Stochastic-Resonance%20Algorithm%20With%20Stability%20Mutation%20Operator&rft.jtitle=IEEE%20access&rft.au=Tong,%20Ling&rft.date=2018-01-01&rft.volume=6&rft.spage=1167&rft.epage=1176&rft.pages=1167-1176&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2778022&rft_dat=%3Cproquest_ieee_%3E2455898759%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455898759&rft_id=info:pmid/&rft_ieee_id=8123851&rft_doaj_id=oai_doaj_org_article_ef95656a3ad041c0986600e66ab2e607&rfr_iscdi=true |