A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator

When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.1167-1176
Hauptverfasser: Tong, Ling, Li, Xiaogang, Hu, Jinhai, Ren, Litong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1176
container_issue
container_start_page 1167
container_title IEEE access
container_volume 6
creator Tong, Ling
Li, Xiaogang
Hu, Jinhai
Ren, Litong
description When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.
doi_str_mv 10.1109/ACCESS.2017.2778022
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455898759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8123851</ieee_id><doaj_id>oai_doaj_org_article_ef95656a3ad041c0986600e66ab2e607</doaj_id><sourcerecordid>2455898759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUIDDWl-QS4LOa87-t49GpO2gRSXOqFHMZJnHZn1ytXKh_TXV-ma0DnMiMd7bzS8qrplsGAMus_L1ep-s1lwYGbBjWmB84vqijPdNUIJ_eG_98fqZpr2UKotkDJX1W5Z_9is6_Uxh0P4gznEsd54HKh5SjhOfUyHM5ijf8EpB9_8pCmOOHqql8MuppBfDvWv0gsHXRhCfq2_n_IsWx8pYY7pU3XZ4zDRzXleV89f7p9W35rH9deH1fKx8RLa3DjtmJc9Me578p47o0Eqz9EAd95xwzkI6TSg65iETqIATShIbrV2BsR19TD7biPu7TGFA6ZXGzHYf0BMO4upHDGQpb5TWmkUuAXJPHSt1gCkNTpOGkzxupu9jin-PtGU7T6e0li-b7lUqu1ao7rCEjPLpzhNifr3rQzsW0B2Dsi-BWTPARXV7awKRPSuaBkXrWLiLxvHjHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455898759</pqid></control><display><type>article</type><title>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tong, Ling ; Li, Xiaogang ; Hu, Jinhai ; Ren, Litong</creator><creatorcontrib>Tong, Ling ; Li, Xiaogang ; Hu, Jinhai ; Ren, Litong</creatorcontrib><description>When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2778022</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Fault detection ; Indexes ; Iterative algorithms ; Iterative methods ; Mutation ; Optimization ; Parameters ; Particle swarm optimization ; particle swarm optimization (PSO) ; Resonance ; Resonant frequency ; scale-transformation stochastic resonance ; signal processing ; Signal to noise ratio ; Stability analysis ; Stochastic resonance ; Systems stability ; Transformations ; Weight</subject><ispartof>IEEE access, 2018-01, Vol.6, p.1167-1176</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</citedby><cites>FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</cites><orcidid>0000-0002-7680-4115 ; 0000-0002-7087-7671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8123851$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Tong, Ling</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Hu, Jinhai</creatorcontrib><creatorcontrib>Ren, Litong</creatorcontrib><title>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</title><title>IEEE access</title><addtitle>Access</addtitle><description>When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Fault detection</subject><subject>Indexes</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>scale-transformation stochastic resonance</subject><subject>signal processing</subject><subject>Signal to noise ratio</subject><subject>Stability analysis</subject><subject>Stochastic resonance</subject><subject>Systems stability</subject><subject>Transformations</subject><subject>Weight</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUIDDWl-QS4LOa87-t49GpO2gRSXOqFHMZJnHZn1ytXKh_TXV-ma0DnMiMd7bzS8qrplsGAMus_L1ep-s1lwYGbBjWmB84vqijPdNUIJ_eG_98fqZpr2UKotkDJX1W5Z_9is6_Uxh0P4gznEsd54HKh5SjhOfUyHM5ijf8EpB9_8pCmOOHqql8MuppBfDvWv0gsHXRhCfq2_n_IsWx8pYY7pU3XZ4zDRzXleV89f7p9W35rH9deH1fKx8RLa3DjtmJc9Me578p47o0Eqz9EAd95xwzkI6TSg65iETqIATShIbrV2BsR19TD7biPu7TGFA6ZXGzHYf0BMO4upHDGQpb5TWmkUuAXJPHSt1gCkNTpOGkzxupu9jin-PtGU7T6e0li-b7lUqu1ao7rCEjPLpzhNifr3rQzsW0B2Dsi-BWTPARXV7awKRPSuaBkXrWLiLxvHjHw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Tong, Ling</creator><creator>Li, Xiaogang</creator><creator>Hu, Jinhai</creator><creator>Ren, Litong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7680-4115</orcidid><orcidid>https://orcid.org/0000-0002-7087-7671</orcidid></search><sort><creationdate>20180101</creationdate><title>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</title><author>Tong, Ling ; Li, Xiaogang ; Hu, Jinhai ; Ren, Litong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b6b1c4fe12cfecc2b76045c2a702bcb2722034b60ab914094a306ea3e4d66b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Fault detection</topic><topic>Indexes</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>scale-transformation stochastic resonance</topic><topic>signal processing</topic><topic>Signal to noise ratio</topic><topic>Stability analysis</topic><topic>Stochastic resonance</topic><topic>Systems stability</topic><topic>Transformations</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Ling</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Hu, Jinhai</creatorcontrib><creatorcontrib>Ren, Litong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Ling</au><au>Li, Xiaogang</au><au>Hu, Jinhai</au><au>Ren, Litong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>1167</spage><epage>1176</epage><pages>1167-1176</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance method, the initial value and value range of the optimization parameters are defined inappropriately, divergence problems may easily emerge in the calculation process, and optimization may stop prematurely. To solve this problem, this research has analyzed the parameters that influence system stability using the scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in mutation operations on particles outside the stable condition. To ameliorate the poor local search ability and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression strategy based on a particle distance index has been developed. Based on these two research results, a PSO optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed. The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The results show that when the stable mutation operator acts on the SR optimization parameters, divergence is effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2778022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7680-4115</orcidid><orcidid>https://orcid.org/0000-0002-7087-7671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.1167-1176
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455898759
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithm design and analysis
Algorithms
Fault detection
Indexes
Iterative algorithms
Iterative methods
Mutation
Optimization
Parameters
Particle swarm optimization
particle swarm optimization (PSO)
Resonance
Resonant frequency
scale-transformation stochastic resonance
signal processing
Signal to noise ratio
Stability analysis
Stochastic resonance
Systems stability
Transformations
Weight
title A PSO Optimization Scale-Transformation Stochastic-Resonance Algorithm With Stability Mutation Operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PSO%20Optimization%20Scale-Transformation%20Stochastic-Resonance%20Algorithm%20With%20Stability%20Mutation%20Operator&rft.jtitle=IEEE%20access&rft.au=Tong,%20Ling&rft.date=2018-01-01&rft.volume=6&rft.spage=1167&rft.epage=1176&rft.pages=1167-1176&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2778022&rft_dat=%3Cproquest_ieee_%3E2455898759%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455898759&rft_id=info:pmid/&rft_ieee_id=8123851&rft_doaj_id=oai_doaj_org_article_ef95656a3ad041c0986600e66ab2e607&rfr_iscdi=true