Cluster Ensemble Based on Iteratively Refined Co-Association Matrix
Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a spac...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018, Vol.6, p.69210-69223 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69223 |
---|---|
container_issue | |
container_start_page | 69210 |
container_title | IEEE access |
container_volume | 6 |
creator | Zhong, Caiming Luo, Ting Yue, Xiaodong |
description | Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods. |
doi_str_mv | 10.1109/ACCESS.2018.2879851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455898615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8528373</ieee_id><doaj_id>oai_doaj_org_article_d56456d7d8e34db89b3ca04d774286e7</doaj_id><sourcerecordid>2455898615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQXURB0f6CXhY8b813sse6VC1UBKvnkE0msmXb1GQr-u9NXRHnMsOb994MryimGM0wRvXNvGkW6_WMIKxmRMlacXxSXBAs6opyKk7_zefFJKUNyqUyxOVF0TT9IQ0Qy8Uuwbbtobw1CVwZduUyw2boPqD_Kp_Bd7sMN6GapxRslxeZ8miG2H1eFWfe9Akmv_2yeL1bvDQP1erpftnMV5VlSA2VZy3xCgluHGGGEZYnCpiAwFYI7zFqLaVG1q23rUdAPJVOmLpmzualp5fFcvR1wWz0PnZbE790MJ3-AUJ80yYOne1BOy4YF046BZS5VtUttQYxJyUjSoDMXtej1z6G9wOkQW_CIe7y-5owzlWtBOaZRUeWjSGlCP7vKkb6GL4ew9fH8PVv-Fk1HVUdAPwpFCeKSkq_AdIHf3o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455898615</pqid></control><display><type>article</type><title>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhong, Caiming ; Luo, Ting ; Yue, Xiaodong</creator><creatorcontrib>Zhong, Caiming ; Luo, Ting ; Yue, Xiaodong</creatorcontrib><description>Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2879851</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification algorithms ; cluster ensemble ; Clustering ; Clustering algorithms ; co-association matrix ; Computer science ; Couplings ; Datasets ; Linear programming ; Partitioning algorithms ; Partitions ; Periodic structures</subject><ispartof>IEEE access, 2018, Vol.6, p.69210-69223</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</citedby><cites>FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</cites><orcidid>0000-0001-5126-8849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8528373$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhong, Caiming</creatorcontrib><creatorcontrib>Luo, Ting</creatorcontrib><creatorcontrib>Yue, Xiaodong</creatorcontrib><title>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods.</description><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>cluster ensemble</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>co-association matrix</subject><subject>Computer science</subject><subject>Couplings</subject><subject>Datasets</subject><subject>Linear programming</subject><subject>Partitioning algorithms</subject><subject>Partitions</subject><subject>Periodic structures</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQXURB0f6CXhY8b813sse6VC1UBKvnkE0msmXb1GQr-u9NXRHnMsOb994MryimGM0wRvXNvGkW6_WMIKxmRMlacXxSXBAs6opyKk7_zefFJKUNyqUyxOVF0TT9IQ0Qy8Uuwbbtobw1CVwZduUyw2boPqD_Kp_Bd7sMN6GapxRslxeZ8miG2H1eFWfe9Akmv_2yeL1bvDQP1erpftnMV5VlSA2VZy3xCgluHGGGEZYnCpiAwFYI7zFqLaVG1q23rUdAPJVOmLpmzualp5fFcvR1wWz0PnZbE790MJ3-AUJ80yYOne1BOy4YF046BZS5VtUttQYxJyUjSoDMXtej1z6G9wOkQW_CIe7y-5owzlWtBOaZRUeWjSGlCP7vKkb6GL4ew9fH8PVv-Fk1HVUdAPwpFCeKSkq_AdIHf3o</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhong, Caiming</creator><creator>Luo, Ting</creator><creator>Yue, Xiaodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5126-8849</orcidid></search><sort><creationdate>2018</creationdate><title>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</title><author>Zhong, Caiming ; Luo, Ting ; Yue, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>cluster ensemble</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>co-association matrix</topic><topic>Computer science</topic><topic>Couplings</topic><topic>Datasets</topic><topic>Linear programming</topic><topic>Partitioning algorithms</topic><topic>Partitions</topic><topic>Periodic structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Caiming</creatorcontrib><creatorcontrib>Luo, Ting</creatorcontrib><creatorcontrib>Yue, Xiaodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Caiming</au><au>Luo, Ting</au><au>Yue, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>69210</spage><epage>69223</epage><pages>69210-69223</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2879851</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5126-8849</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018, Vol.6, p.69210-69223 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455898615 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Classification algorithms cluster ensemble Clustering Clustering algorithms co-association matrix Computer science Couplings Datasets Linear programming Partitioning algorithms Partitions Periodic structures |
title | Cluster Ensemble Based on Iteratively Refined Co-Association Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20Ensemble%20Based%20on%20Iteratively%20Refined%20Co-Association%20Matrix&rft.jtitle=IEEE%20access&rft.au=Zhong,%20Caiming&rft.date=2018&rft.volume=6&rft.spage=69210&rft.epage=69223&rft.pages=69210-69223&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2879851&rft_dat=%3Cproquest_ieee_%3E2455898615%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455898615&rft_id=info:pmid/&rft_ieee_id=8528373&rft_doaj_id=oai_doaj_org_article_d56456d7d8e34db89b3ca04d774286e7&rfr_iscdi=true |