Cluster Ensemble Based on Iteratively Refined Co-Association Matrix

Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018, Vol.6, p.69210-69223
Hauptverfasser: Zhong, Caiming, Luo, Ting, Yue, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69223
container_issue
container_start_page 69210
container_title IEEE access
container_volume 6
creator Zhong, Caiming
Luo, Ting
Yue, Xiaodong
description Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2018.2879851
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455898615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8528373</ieee_id><doaj_id>oai_doaj_org_article_d56456d7d8e34db89b3ca04d774286e7</doaj_id><sourcerecordid>2455898615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQXURB0f6CXhY8b813sse6VC1UBKvnkE0msmXb1GQr-u9NXRHnMsOb994MryimGM0wRvXNvGkW6_WMIKxmRMlacXxSXBAs6opyKk7_zefFJKUNyqUyxOVF0TT9IQ0Qy8Uuwbbtobw1CVwZduUyw2boPqD_Kp_Bd7sMN6GapxRslxeZ8miG2H1eFWfe9Akmv_2yeL1bvDQP1erpftnMV5VlSA2VZy3xCgluHGGGEZYnCpiAwFYI7zFqLaVG1q23rUdAPJVOmLpmzualp5fFcvR1wWz0PnZbE790MJ3-AUJ80yYOne1BOy4YF046BZS5VtUttQYxJyUjSoDMXtej1z6G9wOkQW_CIe7y-5owzlWtBOaZRUeWjSGlCP7vKkb6GL4ew9fH8PVv-Fk1HVUdAPwpFCeKSkq_AdIHf3o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455898615</pqid></control><display><type>article</type><title>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhong, Caiming ; Luo, Ting ; Yue, Xiaodong</creator><creatorcontrib>Zhong, Caiming ; Luo, Ting ; Yue, Xiaodong</creatorcontrib><description>Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2879851</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification algorithms ; cluster ensemble ; Clustering ; Clustering algorithms ; co-association matrix ; Computer science ; Couplings ; Datasets ; Linear programming ; Partitioning algorithms ; Partitions ; Periodic structures</subject><ispartof>IEEE access, 2018, Vol.6, p.69210-69223</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</citedby><cites>FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</cites><orcidid>0000-0001-5126-8849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8528373$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhong, Caiming</creatorcontrib><creatorcontrib>Luo, Ting</creatorcontrib><creatorcontrib>Yue, Xiaodong</creatorcontrib><title>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods.</description><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>cluster ensemble</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>co-association matrix</subject><subject>Computer science</subject><subject>Couplings</subject><subject>Datasets</subject><subject>Linear programming</subject><subject>Partitioning algorithms</subject><subject>Partitions</subject><subject>Periodic structures</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQXURB0f6CXhY8b813sse6VC1UBKvnkE0msmXb1GQr-u9NXRHnMsOb994MryimGM0wRvXNvGkW6_WMIKxmRMlacXxSXBAs6opyKk7_zefFJKUNyqUyxOVF0TT9IQ0Qy8Uuwbbtobw1CVwZduUyw2boPqD_Kp_Bd7sMN6GapxRslxeZ8miG2H1eFWfe9Akmv_2yeL1bvDQP1erpftnMV5VlSA2VZy3xCgluHGGGEZYnCpiAwFYI7zFqLaVG1q23rUdAPJVOmLpmzualp5fFcvR1wWz0PnZbE790MJ3-AUJ80yYOne1BOy4YF046BZS5VtUttQYxJyUjSoDMXtej1z6G9wOkQW_CIe7y-5owzlWtBOaZRUeWjSGlCP7vKkb6GL4ew9fH8PVv-Fk1HVUdAPwpFCeKSkq_AdIHf3o</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhong, Caiming</creator><creator>Luo, Ting</creator><creator>Yue, Xiaodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5126-8849</orcidid></search><sort><creationdate>2018</creationdate><title>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</title><author>Zhong, Caiming ; Luo, Ting ; Yue, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f4b2f8065ad24a42465a3e12e61c66ff10bc33a79bfcbf0e2f37d6a994dcf10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>cluster ensemble</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>co-association matrix</topic><topic>Computer science</topic><topic>Couplings</topic><topic>Datasets</topic><topic>Linear programming</topic><topic>Partitioning algorithms</topic><topic>Partitions</topic><topic>Periodic structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Caiming</creatorcontrib><creatorcontrib>Luo, Ting</creatorcontrib><creatorcontrib>Yue, Xiaodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Caiming</au><au>Luo, Ting</au><au>Yue, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster Ensemble Based on Iteratively Refined Co-Association Matrix</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>69210</spage><epage>69223</epage><pages>69210-69223</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cluster ensemble aims at discovering the intrinsic structure of a given dataset robustly and stably, and achieves this by combining multiple base partitions into a single final one. Some cluster ensemble algorithms in the literature are based on a co-association matrix, which can be viewed as a space transformation of the original dataset. However, the co-association matrix does not always depict the cluster structure well. In this paper, we propose a method to refine the co-association matrix and make it describe the structure more accurately. The main idea is to define an inter-cluster similarity with the co-association matrix, then repeatedly combine the most similar cluster pair of a base partition. In turn, the co-association matrix is updated in terms of the combined cluster pair. Furthermore, based on the refined co-association matrix, three consensus schemes are designed to generate the final clustering. The experimental results on eight synthetic datasets and eight real datasets demonstrate that the refined co-association matrix depicts the cluster structure more accurate than the original one, and the proposed ensemble schemes with the refined matrix can produce clusterings with high quality compared with the several state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2879851</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5126-8849</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.69210-69223
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455898615
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Classification algorithms
cluster ensemble
Clustering
Clustering algorithms
co-association matrix
Computer science
Couplings
Datasets
Linear programming
Partitioning algorithms
Partitions
Periodic structures
title Cluster Ensemble Based on Iteratively Refined Co-Association Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20Ensemble%20Based%20on%20Iteratively%20Refined%20Co-Association%20Matrix&rft.jtitle=IEEE%20access&rft.au=Zhong,%20Caiming&rft.date=2018&rft.volume=6&rft.spage=69210&rft.epage=69223&rft.pages=69210-69223&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2879851&rft_dat=%3Cproquest_ieee_%3E2455898615%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455898615&rft_id=info:pmid/&rft_ieee_id=8528373&rft_doaj_id=oai_doaj_org_article_d56456d7d8e34db89b3ca04d774286e7&rfr_iscdi=true