A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis

The existing approaches for fuzzy soft sets decision-making are mainly based on different types of level soft sets. How to deal with such kinds of fuzzy soft sets decision-making problems via decreasing the uncertainty resulting from human's subjective cognition is still an open issue. To addre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018, Vol.6, p.25300-25312
1. Verfasser: Xiao, Fuyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25312
container_issue
container_start_page 25300
container_title IEEE access
container_volume 6
creator Xiao, Fuyuan
description The existing approaches for fuzzy soft sets decision-making are mainly based on different types of level soft sets. How to deal with such kinds of fuzzy soft sets decision-making problems via decreasing the uncertainty resulting from human's subjective cognition is still an open issue. To address this issue, a hybrid method for utilizing fuzzy soft sets in decision-making by integrating a fuzzy preference relations analysis based on the belief entropy with the Dempster-Shafer evidence theory is proposed. The proposed method is composed of four procedures. First, we measure the uncertainties of parameters by leveraging the belief entropy. Second, with the fuzzy preference relations analysis, the uncertainties of parameters are modulated by making use of the relative reliability preference of parameters. Third, an appropriate basic probability assignment in terms of each parameter is generated on the modulated uncertainty degrees of parameters basis. Finally, we adopt Dempster's combination rule to fuse the independent parameters into an integrated one; thus, the best one can be obtained based on the ranking candidate alternatives. In order to validate the feasibility and effectiveness of the proposed method, a numerical example and a medical diagnosis application are implemented. From the experimental results, it is demonstrated that the proposed method outperforms the related methods, because the uncertainty resulting from human's subjective cognition can be reduced; meanwhile, the decision-making level can also be improved with better performance.
doi_str_mv 10.1109/ACCESS.2018.2820099
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455897700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8330008</ieee_id><doaj_id>oai_doaj_org_article_6fc67dd0aeee412ca688beb0080f8916</doaj_id><sourcerecordid>2455897700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-efa21e8d6d25449c7e3f52db28e5d5bec4c258a918388da9622890f541912163</originalsourceid><addsrcrecordid>eNpNkMtuwjAQRaOqlYooX8DGUtdQP-LEXiIeBQnUBewtx55QU4qpHRbw9TUEVZ2NR1dz73hOlvUJHhKC5dtoPJ6u10OKiRhSQTGW8iHrUFLIAeOsePzXP2e9GHc4lUgSLzvZZITm5yo4i2any-WM1r5u0BqaiCZgXHT-gFb6yx22aAXNp7fIJQGsM3qPJk5vDz66-JI91XofoXd_u9lmNt2M54Plx_tiPFoOTI5FM4BaUwLCFpbyPJemBFZzaisqgFtegckN5UJLIpgQVsuCUiFxzXMiSTqBdbNFG2u93qljcN86nJXXTt0EH7ZKh8aZPaiiNkVpLdYAkBNqdCFEBVW6G9dC3rJe26xj8D8niI3a-VM4pN8rmnMuZFlinKZYO2WCjzFA_beVYHWFr1r46gpf3eEnV791ubT9zyEYu3JnvzSOffg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455897700</pqid></control><display><type>article</type><title>A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiao, Fuyuan</creator><creatorcontrib>Xiao, Fuyuan</creatorcontrib><description>The existing approaches for fuzzy soft sets decision-making are mainly based on different types of level soft sets. How to deal with such kinds of fuzzy soft sets decision-making problems via decreasing the uncertainty resulting from human's subjective cognition is still an open issue. To address this issue, a hybrid method for utilizing fuzzy soft sets in decision-making by integrating a fuzzy preference relations analysis based on the belief entropy with the Dempster-Shafer evidence theory is proposed. The proposed method is composed of four procedures. First, we measure the uncertainties of parameters by leveraging the belief entropy. Second, with the fuzzy preference relations analysis, the uncertainties of parameters are modulated by making use of the relative reliability preference of parameters. Third, an appropriate basic probability assignment in terms of each parameter is generated on the modulated uncertainty degrees of parameters basis. Finally, we adopt Dempster's combination rule to fuse the independent parameters into an integrated one; thus, the best one can be obtained based on the ranking candidate alternatives. In order to validate the feasibility and effectiveness of the proposed method, a numerical example and a medical diagnosis application are implemented. From the experimental results, it is demonstrated that the proposed method outperforms the related methods, because the uncertainty resulting from human's subjective cognition can be reduced; meanwhile, the decision-making level can also be improved with better performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2820099</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>belief entropy ; belief function ; Cognition ; Decision analysis ; Decision making ; Dempster–Shafer evidence theory ; Diagnosis ; Entropy ; fuzzy preference relations ; Fuzzy sets ; Fuzzy soft set ; Measurement uncertainty ; Medical diagnosis ; Parameter uncertainty ; Uncertainty ; Uncertainty analysis ; variance of entropy</subject><ispartof>IEEE access, 2018, Vol.6, p.25300-25312</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-efa21e8d6d25449c7e3f52db28e5d5bec4c258a918388da9622890f541912163</citedby><cites>FETCH-LOGICAL-c408t-efa21e8d6d25449c7e3f52db28e5d5bec4c258a918388da9622890f541912163</cites><orcidid>0000-0002-6303-895X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8330008$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Xiao, Fuyuan</creatorcontrib><title>A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis</title><title>IEEE access</title><addtitle>Access</addtitle><description>The existing approaches for fuzzy soft sets decision-making are mainly based on different types of level soft sets. How to deal with such kinds of fuzzy soft sets decision-making problems via decreasing the uncertainty resulting from human's subjective cognition is still an open issue. To address this issue, a hybrid method for utilizing fuzzy soft sets in decision-making by integrating a fuzzy preference relations analysis based on the belief entropy with the Dempster-Shafer evidence theory is proposed. The proposed method is composed of four procedures. First, we measure the uncertainties of parameters by leveraging the belief entropy. Second, with the fuzzy preference relations analysis, the uncertainties of parameters are modulated by making use of the relative reliability preference of parameters. Third, an appropriate basic probability assignment in terms of each parameter is generated on the modulated uncertainty degrees of parameters basis. Finally, we adopt Dempster's combination rule to fuse the independent parameters into an integrated one; thus, the best one can be obtained based on the ranking candidate alternatives. In order to validate the feasibility and effectiveness of the proposed method, a numerical example and a medical diagnosis application are implemented. From the experimental results, it is demonstrated that the proposed method outperforms the related methods, because the uncertainty resulting from human's subjective cognition can be reduced; meanwhile, the decision-making level can also be improved with better performance.</description><subject>belief entropy</subject><subject>belief function</subject><subject>Cognition</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Dempster–Shafer evidence theory</subject><subject>Diagnosis</subject><subject>Entropy</subject><subject>fuzzy preference relations</subject><subject>Fuzzy sets</subject><subject>Fuzzy soft set</subject><subject>Measurement uncertainty</subject><subject>Medical diagnosis</subject><subject>Parameter uncertainty</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>variance of entropy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtuwjAQRaOqlYooX8DGUtdQP-LEXiIeBQnUBewtx55QU4qpHRbw9TUEVZ2NR1dz73hOlvUJHhKC5dtoPJ6u10OKiRhSQTGW8iHrUFLIAeOsePzXP2e9GHc4lUgSLzvZZITm5yo4i2any-WM1r5u0BqaiCZgXHT-gFb6yx22aAXNp7fIJQGsM3qPJk5vDz66-JI91XofoXd_u9lmNt2M54Plx_tiPFoOTI5FM4BaUwLCFpbyPJemBFZzaisqgFtegckN5UJLIpgQVsuCUiFxzXMiSTqBdbNFG2u93qljcN86nJXXTt0EH7ZKh8aZPaiiNkVpLdYAkBNqdCFEBVW6G9dC3rJe26xj8D8niI3a-VM4pN8rmnMuZFlinKZYO2WCjzFA_beVYHWFr1r46gpf3eEnV791ubT9zyEYu3JnvzSOffg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Xiao, Fuyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6303-895X</orcidid></search><sort><creationdate>2018</creationdate><title>A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis</title><author>Xiao, Fuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-efa21e8d6d25449c7e3f52db28e5d5bec4c258a918388da9622890f541912163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>belief entropy</topic><topic>belief function</topic><topic>Cognition</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Dempster–Shafer evidence theory</topic><topic>Diagnosis</topic><topic>Entropy</topic><topic>fuzzy preference relations</topic><topic>Fuzzy sets</topic><topic>Fuzzy soft set</topic><topic>Measurement uncertainty</topic><topic>Medical diagnosis</topic><topic>Parameter uncertainty</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>variance of entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Fuyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Fuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>25300</spage><epage>25312</epage><pages>25300-25312</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The existing approaches for fuzzy soft sets decision-making are mainly based on different types of level soft sets. How to deal with such kinds of fuzzy soft sets decision-making problems via decreasing the uncertainty resulting from human's subjective cognition is still an open issue. To address this issue, a hybrid method for utilizing fuzzy soft sets in decision-making by integrating a fuzzy preference relations analysis based on the belief entropy with the Dempster-Shafer evidence theory is proposed. The proposed method is composed of four procedures. First, we measure the uncertainties of parameters by leveraging the belief entropy. Second, with the fuzzy preference relations analysis, the uncertainties of parameters are modulated by making use of the relative reliability preference of parameters. Third, an appropriate basic probability assignment in terms of each parameter is generated on the modulated uncertainty degrees of parameters basis. Finally, we adopt Dempster's combination rule to fuse the independent parameters into an integrated one; thus, the best one can be obtained based on the ranking candidate alternatives. In order to validate the feasibility and effectiveness of the proposed method, a numerical example and a medical diagnosis application are implemented. From the experimental results, it is demonstrated that the proposed method outperforms the related methods, because the uncertainty resulting from human's subjective cognition can be reduced; meanwhile, the decision-making level can also be improved with better performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2820099</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6303-895X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.25300-25312
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455897700
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects belief entropy
belief function
Cognition
Decision analysis
Decision making
Dempster–Shafer evidence theory
Diagnosis
Entropy
fuzzy preference relations
Fuzzy sets
Fuzzy soft set
Measurement uncertainty
Medical diagnosis
Parameter uncertainty
Uncertainty
Uncertainty analysis
variance of entropy
title A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Fuzzy%20Soft%20Sets%20Decision%20Making%20Method%20in%20Medical%20Diagnosis&rft.jtitle=IEEE%20access&rft.au=Xiao,%20Fuyuan&rft.date=2018&rft.volume=6&rft.spage=25300&rft.epage=25312&rft.pages=25300-25312&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2820099&rft_dat=%3Cproquest_doaj_%3E2455897700%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455897700&rft_id=info:pmid/&rft_ieee_id=8330008&rft_doaj_id=oai_doaj_org_article_6fc67dd0aeee412ca688beb0080f8916&rfr_iscdi=true