GraphDuo: A Dual-Model Graph Processing Framework

Algorithms for large-scale natural graph processing can be categorized into two types based on their value propagation behaviors: the unidirectional value propagation algorithms and the bidirectional value propagation algorithms. The graph computation in different types exhibits different properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.35057-35071
Hauptverfasser: Tian, Xinhui, Zhan, Jianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35071
container_issue
container_start_page 35057
container_title IEEE access
container_volume 6
creator Tian, Xinhui
Zhan, Jianfeng
description Algorithms for large-scale natural graph processing can be categorized into two types based on their value propagation behaviors: the unidirectional value propagation algorithms and the bidirectional value propagation algorithms. The graph computation in different types exhibits different properties on how vertices interact with their neighbors and has different requirements on system design. Current distributed graph processing systems usually try to support both types in one general-purpose computing model, which can result in suboptimial performance, high communication overhead, and high resource consumption. In this paper, we propose GraphDuo, a new Spark-based graph processing framework that provides two efficient computing models for unidirectional and bidirectional value propagation algorithms, respectively. Combined with a degree-based graph partitioning scheme, a locality-aware graph layout, and other optimization techniques, GraphDuo achieves low computation cost, low communication overhead, small memory footprint, and good communication balance for two types of algorithms. According to the experimental results, GraphDuo can outperform GraphX from 1.76\times to 6.56\times and from 1.11\times to 1.26\times for two types of algorithms, respectively, with much less memory consumption and communication cost. The source code of GraphDuo is publicly available from http://prof.ict.ac.cn/GraphDuo .
doi_str_mv 10.1109/ACCESS.2018.2848291
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455891950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8387776</ieee_id><doaj_id>oai_doaj_org_article_75d7a9176c314c88b7229326751cf132</doaj_id><sourcerecordid>2455891950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-17ea2178e0c57f553cc90d15f8b099f06987bc8c6a4780a358496d60cf7234cf3</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhRdRsGh_QV8WfN6aSTY338r2YqGiUH0OaTapW7dNTbqI_95ttxTnZYbDnDPDlyQDQEMAJB9HRTFZLocYgRhikQss4SrpYWAyI5Sw63_zbdKPcYPaEq1EeS-BWdD7z3Hjn9JROm50nb340tbpSU7fgjc2xmq3TqdBb-2PD1_3yY3TdbT9c79LPqaT9-I5W7zO5sVokZkciUMG3GoMXFhkKHeUEmMkKoE6sUJSOsSk4CsjDNM5F0gTKnLJSoaM45jkxpG7ZN7lll5v1D5UWx1-ldeVOgk-rJUOh8rUVnFaci2BM0MgN0KsOMaSYMYpGAcEt1kPXdY--O_GxoPa-Cbs2vcVzikVEiRF7RbptkzwMQbrLlcBqSNq1aFWR9TqjLp1DTpXZa29OAQRnHNG_gAy4nY6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455891950</pqid></control><display><type>article</type><title>GraphDuo: A Dual-Model Graph Processing Framework</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tian, Xinhui ; Zhan, Jianfeng</creator><creatorcontrib>Tian, Xinhui ; Zhan, Jianfeng</creatorcontrib><description><![CDATA[Algorithms for large-scale natural graph processing can be categorized into two types based on their value propagation behaviors: the unidirectional value propagation algorithms and the bidirectional value propagation algorithms. The graph computation in different types exhibits different properties on how vertices interact with their neighbors and has different requirements on system design. Current distributed graph processing systems usually try to support both types in one general-purpose computing model, which can result in suboptimial performance, high communication overhead, and high resource consumption. In this paper, we propose GraphDuo, a new Spark-based graph processing framework that provides two efficient computing models for unidirectional and bidirectional value propagation algorithms, respectively. Combined with a degree-based graph partitioning scheme, a locality-aware graph layout, and other optimization techniques, GraphDuo achieves low computation cost, low communication overhead, small memory footprint, and good communication balance for two types of algorithms. According to the experimental results, GraphDuo can outperform GraphX from <inline-formula> <tex-math notation="LaTeX">1.76\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">6.56\times </tex-math></inline-formula> and from <inline-formula> <tex-math notation="LaTeX">1.11\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1.26\times </tex-math></inline-formula> for two types of algorithms, respectively, with much less memory consumption and communication cost. The source code of GraphDuo is publicly available from http://prof.ict.ac.cn/GraphDuo .]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2848291</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Apexes ; Approximation algorithms ; Communication ; Computation ; Computational modeling ; Computer memory ; Consumption ; Current distribution ; Data processing ; distributed processing ; Graph theory ; large-scale systems ; Layout ; Mirrors ; Optimization ; Optimization techniques ; Partitioning algorithms ; Propagation ; Source code ; Sparks ; Systems design</subject><ispartof>IEEE access, 2018-01, Vol.6, p.35057-35071</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-17ea2178e0c57f553cc90d15f8b099f06987bc8c6a4780a358496d60cf7234cf3</citedby><cites>FETCH-LOGICAL-c408t-17ea2178e0c57f553cc90d15f8b099f06987bc8c6a4780a358496d60cf7234cf3</cites><orcidid>0000-0003-3687-7923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8387776$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Tian, Xinhui</creatorcontrib><creatorcontrib>Zhan, Jianfeng</creatorcontrib><title>GraphDuo: A Dual-Model Graph Processing Framework</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Algorithms for large-scale natural graph processing can be categorized into two types based on their value propagation behaviors: the unidirectional value propagation algorithms and the bidirectional value propagation algorithms. The graph computation in different types exhibits different properties on how vertices interact with their neighbors and has different requirements on system design. Current distributed graph processing systems usually try to support both types in one general-purpose computing model, which can result in suboptimial performance, high communication overhead, and high resource consumption. In this paper, we propose GraphDuo, a new Spark-based graph processing framework that provides two efficient computing models for unidirectional and bidirectional value propagation algorithms, respectively. Combined with a degree-based graph partitioning scheme, a locality-aware graph layout, and other optimization techniques, GraphDuo achieves low computation cost, low communication overhead, small memory footprint, and good communication balance for two types of algorithms. According to the experimental results, GraphDuo can outperform GraphX from <inline-formula> <tex-math notation="LaTeX">1.76\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">6.56\times </tex-math></inline-formula> and from <inline-formula> <tex-math notation="LaTeX">1.11\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1.26\times </tex-math></inline-formula> for two types of algorithms, respectively, with much less memory consumption and communication cost. The source code of GraphDuo is publicly available from http://prof.ict.ac.cn/GraphDuo .]]></description><subject>Algorithms</subject><subject>Apexes</subject><subject>Approximation algorithms</subject><subject>Communication</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer memory</subject><subject>Consumption</subject><subject>Current distribution</subject><subject>Data processing</subject><subject>distributed processing</subject><subject>Graph theory</subject><subject>large-scale systems</subject><subject>Layout</subject><subject>Mirrors</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Partitioning algorithms</subject><subject>Propagation</subject><subject>Source code</subject><subject>Sparks</subject><subject>Systems design</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLAzEQhRdRsGh_QV8WfN6aSTY338r2YqGiUH0OaTapW7dNTbqI_95ttxTnZYbDnDPDlyQDQEMAJB9HRTFZLocYgRhikQss4SrpYWAyI5Sw63_zbdKPcYPaEq1EeS-BWdD7z3Hjn9JROm50nb340tbpSU7fgjc2xmq3TqdBb-2PD1_3yY3TdbT9c79LPqaT9-I5W7zO5sVokZkciUMG3GoMXFhkKHeUEmMkKoE6sUJSOsSk4CsjDNM5F0gTKnLJSoaM45jkxpG7ZN7lll5v1D5UWx1-ldeVOgk-rJUOh8rUVnFaci2BM0MgN0KsOMaSYMYpGAcEt1kPXdY--O_GxoPa-Cbs2vcVzikVEiRF7RbptkzwMQbrLlcBqSNq1aFWR9TqjLp1DTpXZa29OAQRnHNG_gAy4nY6</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Tian, Xinhui</creator><creator>Zhan, Jianfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3687-7923</orcidid></search><sort><creationdate>20180101</creationdate><title>GraphDuo: A Dual-Model Graph Processing Framework</title><author>Tian, Xinhui ; Zhan, Jianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-17ea2178e0c57f553cc90d15f8b099f06987bc8c6a4780a358496d60cf7234cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Approximation algorithms</topic><topic>Communication</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer memory</topic><topic>Consumption</topic><topic>Current distribution</topic><topic>Data processing</topic><topic>distributed processing</topic><topic>Graph theory</topic><topic>large-scale systems</topic><topic>Layout</topic><topic>Mirrors</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Partitioning algorithms</topic><topic>Propagation</topic><topic>Source code</topic><topic>Sparks</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Xinhui</creatorcontrib><creatorcontrib>Zhan, Jianfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Xinhui</au><au>Zhan, Jianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GraphDuo: A Dual-Model Graph Processing Framework</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>35057</spage><epage>35071</epage><pages>35057-35071</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Algorithms for large-scale natural graph processing can be categorized into two types based on their value propagation behaviors: the unidirectional value propagation algorithms and the bidirectional value propagation algorithms. The graph computation in different types exhibits different properties on how vertices interact with their neighbors and has different requirements on system design. Current distributed graph processing systems usually try to support both types in one general-purpose computing model, which can result in suboptimial performance, high communication overhead, and high resource consumption. In this paper, we propose GraphDuo, a new Spark-based graph processing framework that provides two efficient computing models for unidirectional and bidirectional value propagation algorithms, respectively. Combined with a degree-based graph partitioning scheme, a locality-aware graph layout, and other optimization techniques, GraphDuo achieves low computation cost, low communication overhead, small memory footprint, and good communication balance for two types of algorithms. According to the experimental results, GraphDuo can outperform GraphX from <inline-formula> <tex-math notation="LaTeX">1.76\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">6.56\times </tex-math></inline-formula> and from <inline-formula> <tex-math notation="LaTeX">1.11\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">1.26\times </tex-math></inline-formula> for two types of algorithms, respectively, with much less memory consumption and communication cost. The source code of GraphDuo is publicly available from http://prof.ict.ac.cn/GraphDuo .]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2848291</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3687-7923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.35057-35071
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455891950
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Apexes
Approximation algorithms
Communication
Computation
Computational modeling
Computer memory
Consumption
Current distribution
Data processing
distributed processing
Graph theory
large-scale systems
Layout
Mirrors
Optimization
Optimization techniques
Partitioning algorithms
Propagation
Source code
Sparks
Systems design
title GraphDuo: A Dual-Model Graph Processing Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GraphDuo:%20A%20Dual-Model%20Graph%20Processing%20Framework&rft.jtitle=IEEE%20access&rft.au=Tian,%20Xinhui&rft.date=2018-01-01&rft.volume=6&rft.spage=35057&rft.epage=35071&rft.pages=35057-35071&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2848291&rft_dat=%3Cproquest_cross%3E2455891950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455891950&rft_id=info:pmid/&rft_ieee_id=8387776&rft_doaj_id=oai_doaj_org_article_75d7a9176c314c88b7229326751cf132&rfr_iscdi=true