Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle

As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.48827-48839
Hauptverfasser: Huang, Sai, Jiang, Yizhou, Qin, Xiaoqi, Gao, Yue, Feng, Zhiyong, Zhang, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48839
container_issue
container_start_page 48827
container_title IEEE access
container_volume 6
creator Huang, Sai
Jiang, Yizhou
Qin, Xiaoqi
Gao, Yue
Feng, Zhiyong
Zhang, Ping
description As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel.
doi_str_mv 10.1109/ACCESS.2018.2868224
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455885885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452898</ieee_id><doaj_id>oai_doaj_org_article_caa3ba5bf25f4b90965ae133808682f5</doaj_id><sourcerecordid>2455885885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</originalsourceid><addsrcrecordid>eNpNUdtu1DAQjRBIVKVf0BdLPGfxNbEfV1EplbpqxVLxaE2S8eIliYOdIMEn8NUkpKqwLHs8M-fMeE6WXTO6Y4yaD_uqujked5wyveO60JzLV9kFZ4XJhRLF6__st9lVSme6LL24VHmR_dnPU-hh8g05hHbuFisMpOogJe98sz2DIw8_MXYwjtiSY5hjg4k8JT-cyGHuJp_f4oBkPVaixxhOEfp-DX_10zdynOLcTHOEjnz26Ts5-MH3_vdG_hj90Pixw3fZGwddwqvn-zJ7-njzpfqU3z_c3lX7-7wRXMi8bQvpXOsolULXDAwzmkrGBatbSVGUpqRGCUCDzhQlBVeWQutSC6CgQYnL7G7jbQOc7Rh9D_GXDeDtP0eIJwtx-UeHtgEQNajaceVkbagpFCATQtN1zm7ler9xjTH8mDFN9rxMZ1jat1wqpfW6lyyxZTUxpBTRvVRl1K4a2k1Du2ponzVcUNcbyiPiC0JLxbXR4i-UE5lt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455885885</pqid></control><display><type>article</type><title>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Sai ; Jiang, Yizhou ; Qin, Xiaoqi ; Gao, Yue ; Feng, Zhiyong ; Zhang, Ping</creator><creatorcontrib>Huang, Sai ; Jiang, Yizhou ; Qin, Xiaoqi ; Gao, Yue ; Feng, Zhiyong ; Zhang, Ping</creatorcontrib><description>As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2868224</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic modulation classification ; Classification ; Classifiers ; cumulant ; Fading channels ; Feature extraction ; Genetic algorithms ; Genetic programming ; Modulation ; multi-gene genetic programming ; Optimization ; overlapped signal classification ; Performance evaluation ; Programming ; Risk management ; Robustness ; structural risk minimization principle ; Training</subject><ispartof>IEEE access, 2018-01, Vol.6, p.48827-48839</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</citedby><cites>FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</cites><orcidid>0000-0002-5186-3362 ; 0000-0001-5322-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452898$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Jiang, Yizhou</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><title>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel.</description><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Classifiers</subject><subject>cumulant</subject><subject>Fading channels</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Genetic programming</subject><subject>Modulation</subject><subject>multi-gene genetic programming</subject><subject>Optimization</subject><subject>overlapped signal classification</subject><subject>Performance evaluation</subject><subject>Programming</subject><subject>Risk management</subject><subject>Robustness</subject><subject>structural risk minimization principle</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtu1DAQjRBIVKVf0BdLPGfxNbEfV1EplbpqxVLxaE2S8eIliYOdIMEn8NUkpKqwLHs8M-fMeE6WXTO6Y4yaD_uqujked5wyveO60JzLV9kFZ4XJhRLF6__st9lVSme6LL24VHmR_dnPU-hh8g05hHbuFisMpOogJe98sz2DIw8_MXYwjtiSY5hjg4k8JT-cyGHuJp_f4oBkPVaixxhOEfp-DX_10zdynOLcTHOEjnz26Ts5-MH3_vdG_hj90Pixw3fZGwddwqvn-zJ7-njzpfqU3z_c3lX7-7wRXMi8bQvpXOsolULXDAwzmkrGBatbSVGUpqRGCUCDzhQlBVeWQutSC6CgQYnL7G7jbQOc7Rh9D_GXDeDtP0eIJwtx-UeHtgEQNajaceVkbagpFCATQtN1zm7ler9xjTH8mDFN9rxMZ1jat1wqpfW6lyyxZTUxpBTRvVRl1K4a2k1Du2ponzVcUNcbyiPiC0JLxbXR4i-UE5lt</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Huang, Sai</creator><creator>Jiang, Yizhou</creator><creator>Qin, Xiaoqi</creator><creator>Gao, Yue</creator><creator>Feng, Zhiyong</creator><creator>Zhang, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5186-3362</orcidid><orcidid>https://orcid.org/0000-0001-5322-222X</orcidid></search><sort><creationdate>20180101</creationdate><title>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</title><author>Huang, Sai ; Jiang, Yizhou ; Qin, Xiaoqi ; Gao, Yue ; Feng, Zhiyong ; Zhang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Classifiers</topic><topic>cumulant</topic><topic>Fading channels</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Genetic programming</topic><topic>Modulation</topic><topic>multi-gene genetic programming</topic><topic>Optimization</topic><topic>overlapped signal classification</topic><topic>Performance evaluation</topic><topic>Programming</topic><topic>Risk management</topic><topic>Robustness</topic><topic>structural risk minimization principle</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Jiang, Yizhou</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sai</au><au>Jiang, Yizhou</au><au>Qin, Xiaoqi</au><au>Gao, Yue</au><au>Feng, Zhiyong</au><au>Zhang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>48827</spage><epage>48839</epage><pages>48827-48839</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2868224</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5186-3362</orcidid><orcidid>https://orcid.org/0000-0001-5322-222X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.48827-48839
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455885885
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Automatic modulation classification
Classification
Classifiers
cumulant
Fading channels
Feature extraction
Genetic algorithms
Genetic programming
Modulation
multi-gene genetic programming
Optimization
overlapped signal classification
Performance evaluation
Programming
Risk management
Robustness
structural risk minimization principle
Training
title Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Modulation%20Classification%20of%20Overlapped%20Sources%20Using%20Multi-Gene%20Genetic%20Programming%20With%20Structural%20Risk%20Minimization%20Principle&rft.jtitle=IEEE%20access&rft.au=Huang,%20Sai&rft.date=2018-01-01&rft.volume=6&rft.spage=48827&rft.epage=48839&rft.pages=48827-48839&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2868224&rft_dat=%3Cproquest_doaj_%3E2455885885%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455885885&rft_id=info:pmid/&rft_ieee_id=8452898&rft_doaj_id=oai_doaj_org_article_caa3ba5bf25f4b90965ae133808682f5&rfr_iscdi=true