Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle
As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attr...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.48827-48839 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48839 |
---|---|
container_issue | |
container_start_page | 48827 |
container_title | IEEE access |
container_volume | 6 |
creator | Huang, Sai Jiang, Yizhou Qin, Xiaoqi Gao, Yue Feng, Zhiyong Zhang, Ping |
description | As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel. |
doi_str_mv | 10.1109/ACCESS.2018.2868224 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455885885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452898</ieee_id><doaj_id>oai_doaj_org_article_caa3ba5bf25f4b90965ae133808682f5</doaj_id><sourcerecordid>2455885885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</originalsourceid><addsrcrecordid>eNpNUdtu1DAQjRBIVKVf0BdLPGfxNbEfV1EplbpqxVLxaE2S8eIliYOdIMEn8NUkpKqwLHs8M-fMeE6WXTO6Y4yaD_uqujked5wyveO60JzLV9kFZ4XJhRLF6__st9lVSme6LL24VHmR_dnPU-hh8g05hHbuFisMpOogJe98sz2DIw8_MXYwjtiSY5hjg4k8JT-cyGHuJp_f4oBkPVaixxhOEfp-DX_10zdynOLcTHOEjnz26Ts5-MH3_vdG_hj90Pixw3fZGwddwqvn-zJ7-njzpfqU3z_c3lX7-7wRXMi8bQvpXOsolULXDAwzmkrGBatbSVGUpqRGCUCDzhQlBVeWQutSC6CgQYnL7G7jbQOc7Rh9D_GXDeDtP0eIJwtx-UeHtgEQNajaceVkbagpFCATQtN1zm7ler9xjTH8mDFN9rxMZ1jat1wqpfW6lyyxZTUxpBTRvVRl1K4a2k1Du2ponzVcUNcbyiPiC0JLxbXR4i-UE5lt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455885885</pqid></control><display><type>article</type><title>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Sai ; Jiang, Yizhou ; Qin, Xiaoqi ; Gao, Yue ; Feng, Zhiyong ; Zhang, Ping</creator><creatorcontrib>Huang, Sai ; Jiang, Yizhou ; Qin, Xiaoqi ; Gao, Yue ; Feng, Zhiyong ; Zhang, Ping</creatorcontrib><description>As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2868224</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic modulation classification ; Classification ; Classifiers ; cumulant ; Fading channels ; Feature extraction ; Genetic algorithms ; Genetic programming ; Modulation ; multi-gene genetic programming ; Optimization ; overlapped signal classification ; Performance evaluation ; Programming ; Risk management ; Robustness ; structural risk minimization principle ; Training</subject><ispartof>IEEE access, 2018-01, Vol.6, p.48827-48839</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</citedby><cites>FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</cites><orcidid>0000-0002-5186-3362 ; 0000-0001-5322-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452898$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Jiang, Yizhou</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><title>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel.</description><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Classifiers</subject><subject>cumulant</subject><subject>Fading channels</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Genetic programming</subject><subject>Modulation</subject><subject>multi-gene genetic programming</subject><subject>Optimization</subject><subject>overlapped signal classification</subject><subject>Performance evaluation</subject><subject>Programming</subject><subject>Risk management</subject><subject>Robustness</subject><subject>structural risk minimization principle</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtu1DAQjRBIVKVf0BdLPGfxNbEfV1EplbpqxVLxaE2S8eIliYOdIMEn8NUkpKqwLHs8M-fMeE6WXTO6Y4yaD_uqujked5wyveO60JzLV9kFZ4XJhRLF6__st9lVSme6LL24VHmR_dnPU-hh8g05hHbuFisMpOogJe98sz2DIw8_MXYwjtiSY5hjg4k8JT-cyGHuJp_f4oBkPVaixxhOEfp-DX_10zdynOLcTHOEjnz26Ts5-MH3_vdG_hj90Pixw3fZGwddwqvn-zJ7-njzpfqU3z_c3lX7-7wRXMi8bQvpXOsolULXDAwzmkrGBatbSVGUpqRGCUCDzhQlBVeWQutSC6CgQYnL7G7jbQOc7Rh9D_GXDeDtP0eIJwtx-UeHtgEQNajaceVkbagpFCATQtN1zm7ler9xjTH8mDFN9rxMZ1jat1wqpfW6lyyxZTUxpBTRvVRl1K4a2k1Du2ponzVcUNcbyiPiC0JLxbXR4i-UE5lt</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Huang, Sai</creator><creator>Jiang, Yizhou</creator><creator>Qin, Xiaoqi</creator><creator>Gao, Yue</creator><creator>Feng, Zhiyong</creator><creator>Zhang, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5186-3362</orcidid><orcidid>https://orcid.org/0000-0001-5322-222X</orcidid></search><sort><creationdate>20180101</creationdate><title>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</title><author>Huang, Sai ; Jiang, Yizhou ; Qin, Xiaoqi ; Gao, Yue ; Feng, Zhiyong ; Zhang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3234-dd64ffdf00438b1a9198041231bd40e37970953ae9ef9670af77388783a0a8a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Classifiers</topic><topic>cumulant</topic><topic>Fading channels</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Genetic programming</topic><topic>Modulation</topic><topic>multi-gene genetic programming</topic><topic>Optimization</topic><topic>overlapped signal classification</topic><topic>Performance evaluation</topic><topic>Programming</topic><topic>Risk management</topic><topic>Robustness</topic><topic>structural risk minimization principle</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Jiang, Yizhou</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Feng, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sai</au><au>Jiang, Yizhou</au><au>Qin, Xiaoqi</au><au>Gao, Yue</au><au>Feng, Zhiyong</au><au>Zhang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>48827</spage><epage>48839</epage><pages>48827-48839</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the spectrum environment becomes increasingly crowded and complicated, primary users may be interfered by secondary users and other illegal users. Automatic modulation classification (AMC) of a single source cannot recognize the overlapped sources. Consequently, the AMC of overlapped sources attracts much attention. In this paper, we propose a genetic programming-based modulation classification method for overlapped sources (GPOS). The proposed GPOS consists of two stages, the training stage, and the classification stage. In the training stage, multi-gene genetic programming (MGP)-based feature engineering transforms sample estimates of cumulants into highly discriminative MGP-features iteratively, until optimal MGP-features (OMGP-features) are obtained, where the structural risk minimization principle (SRMP) is employed to evaluate the classification performance of MGP-features and train the classifier. Moreover, a self-adaptive genetic operation is designed to accelerate the feature engineering process. In the classification stage, the classification decision is made by the trained classifier using the OMGP-features. Through simulation results, we demonstrate that the proposed scheme outperforms other existing methods in terms of classification performance and robustness in case of varying power ratios and fading channel.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2868224</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5186-3362</orcidid><orcidid>https://orcid.org/0000-0001-5322-222X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.48827-48839 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455885885 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Automatic modulation classification Classification Classifiers cumulant Fading channels Feature extraction Genetic algorithms Genetic programming Modulation multi-gene genetic programming Optimization overlapped signal classification Performance evaluation Programming Risk management Robustness structural risk minimization principle Training |
title | Automatic Modulation Classification of Overlapped Sources Using Multi-Gene Genetic Programming With Structural Risk Minimization Principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Modulation%20Classification%20of%20Overlapped%20Sources%20Using%20Multi-Gene%20Genetic%20Programming%20With%20Structural%20Risk%20Minimization%20Principle&rft.jtitle=IEEE%20access&rft.au=Huang,%20Sai&rft.date=2018-01-01&rft.volume=6&rft.spage=48827&rft.epage=48839&rft.pages=48827-48839&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2868224&rft_dat=%3Cproquest_doaj_%3E2455885885%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455885885&rft_id=info:pmid/&rft_ieee_id=8452898&rft_doaj_id=oai_doaj_org_article_caa3ba5bf25f4b90965ae133808682f5&rfr_iscdi=true |