HeteMSD: A Big Data Analytics Framework for Targeted Cyber-Attacks Detection Using Heterogeneous Multisource Data
In the current enterprise network environment, multistep targeted cyber-attacks with concealment and advanced characteristics have become the main threat. Multisource security data are the prerequisite of targeted cyber-attacks detection. However, these data have characters of heterogeneity and sema...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2019-01, Vol.2019 (2019), p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2019 |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2019 |
creator | Li, Tao Ye, Ziwei Guo, Yuanbo Ju, Ankang Ma, Jing |
description | In the current enterprise network environment, multistep targeted cyber-attacks with concealment and advanced characteristics have become the main threat. Multisource security data are the prerequisite of targeted cyber-attacks detection. However, these data have characters of heterogeneity and semantic diversity, and existing attack detection methods do not take comprehensive data sources into account. Identifying and predicting attack intention from heterogeneous noisy data can be meaningful work. In this paper, we first review different data fusion mechanisms of correlating heterogeneous multisource data. On this basis, we propose a big data analytics framework for targeted cyber-attacks detection and give the basic idea of correlation analysis. Our approach will offer the ability to correlate multisource heterogeneous security data and analyze attack intention effectively. |
doi_str_mv | 10.1155/2019/5483918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455787295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455787295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-18138e361ace96f91b448cccbe8c74afe04ffcc9cb6c9411cc8ccbd11410722a3</originalsourceid><addsrcrecordid>eNqF0M9PwjAUB_DFaCKiN8-miUed9G3d1npDEDGBeBDOS_fo5vixQduF8N9bHNGjpzZ9n3zT9_W8W6BPAFHUCyiIXsR4KICfeR0QofApBMH57x3YpXdlzJLSGFjCOt5urKyafg6fSZ-8lAUZSitJv5Lrgy3RkJGWG7Wv9YrktSYzqQvHF2RwyJT2-9ZKXBkydG9oy7oic1NWBTlG6rpQlaobQ6bN2pambjSqn_Rr7yKXa6NuTmfXm49eZ4OxP_l4ex_0Jz6GMbU-cAi5CmOQqEScC8gY44iYKY4Jk7miLM8RBWYxCgaA6KbZwm0INAkCGXa9-zZ3q-tdo4xNl-4TbjOTBiyKEp4EInLqsVWoa2O0ytOtLjdSH1Kg6bHU9FhqeirV8YeWf5XVQu7L__Rdq5UzKpd_OgDKOA2_ARiQgPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455787295</pqid></control><display><type>article</type><title>HeteMSD: A Big Data Analytics Framework for Targeted Cyber-Attacks Detection Using Heterogeneous Multisource Data</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Tao ; Ye, Ziwei ; Guo, Yuanbo ; Ju, Ankang ; Ma, Jing</creator><contributor>Angin, Pelin ; Pelin Angin</contributor><creatorcontrib>Li, Tao ; Ye, Ziwei ; Guo, Yuanbo ; Ju, Ankang ; Ma, Jing ; Angin, Pelin ; Pelin Angin</creatorcontrib><description>In the current enterprise network environment, multistep targeted cyber-attacks with concealment and advanced characteristics have become the main threat. Multisource security data are the prerequisite of targeted cyber-attacks detection. However, these data have characters of heterogeneity and semantic diversity, and existing attack detection methods do not take comprehensive data sources into account. Identifying and predicting attack intention from heterogeneous noisy data can be meaningful work. In this paper, we first review different data fusion mechanisms of correlating heterogeneous multisource data. On this basis, we propose a big data analytics framework for targeted cyber-attacks detection and give the basic idea of correlation analysis. Our approach will offer the ability to correlate multisource heterogeneous security data and analyze attack intention effectively.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2019/5483918</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Behavior ; Big Data ; Correlation analysis ; Cybersecurity ; Data analysis ; Data integration ; Heterogeneity ; Methods ; Network security ; Semantics</subject><ispartof>Security and communication networks, 2019-01, Vol.2019 (2019), p.1-9</ispartof><rights>Copyright © 2019 Ankang Ju et al.</rights><rights>Copyright © 2019 Ankang Ju et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-18138e361ace96f91b448cccbe8c74afe04ffcc9cb6c9411cc8ccbd11410722a3</citedby><cites>FETCH-LOGICAL-c360t-18138e361ace96f91b448cccbe8c74afe04ffcc9cb6c9411cc8ccbd11410722a3</cites><orcidid>0000-0002-7818-4482 ; 0000-0002-5345-2647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Angin, Pelin</contributor><contributor>Pelin Angin</contributor><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Ye, Ziwei</creatorcontrib><creatorcontrib>Guo, Yuanbo</creatorcontrib><creatorcontrib>Ju, Ankang</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><title>HeteMSD: A Big Data Analytics Framework for Targeted Cyber-Attacks Detection Using Heterogeneous Multisource Data</title><title>Security and communication networks</title><description>In the current enterprise network environment, multistep targeted cyber-attacks with concealment and advanced characteristics have become the main threat. Multisource security data are the prerequisite of targeted cyber-attacks detection. However, these data have characters of heterogeneity and semantic diversity, and existing attack detection methods do not take comprehensive data sources into account. Identifying and predicting attack intention from heterogeneous noisy data can be meaningful work. In this paper, we first review different data fusion mechanisms of correlating heterogeneous multisource data. On this basis, we propose a big data analytics framework for targeted cyber-attacks detection and give the basic idea of correlation analysis. Our approach will offer the ability to correlate multisource heterogeneous security data and analyze attack intention effectively.</description><subject>Behavior</subject><subject>Big Data</subject><subject>Correlation analysis</subject><subject>Cybersecurity</subject><subject>Data analysis</subject><subject>Data integration</subject><subject>Heterogeneity</subject><subject>Methods</subject><subject>Network security</subject><subject>Semantics</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9PwjAUB_DFaCKiN8-miUed9G3d1npDEDGBeBDOS_fo5vixQduF8N9bHNGjpzZ9n3zT9_W8W6BPAFHUCyiIXsR4KICfeR0QofApBMH57x3YpXdlzJLSGFjCOt5urKyafg6fSZ-8lAUZSitJv5Lrgy3RkJGWG7Wv9YrktSYzqQvHF2RwyJT2-9ZKXBkydG9oy7oic1NWBTlG6rpQlaobQ6bN2pambjSqn_Rr7yKXa6NuTmfXm49eZ4OxP_l4ex_0Jz6GMbU-cAi5CmOQqEScC8gY44iYKY4Jk7miLM8RBWYxCgaA6KbZwm0INAkCGXa9-zZ3q-tdo4xNl-4TbjOTBiyKEp4EInLqsVWoa2O0ytOtLjdSH1Kg6bHU9FhqeirV8YeWf5XVQu7L__Rdq5UzKpd_OgDKOA2_ARiQgPo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Tao</creator><creator>Ye, Ziwei</creator><creator>Guo, Yuanbo</creator><creator>Ju, Ankang</creator><creator>Ma, Jing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7818-4482</orcidid><orcidid>https://orcid.org/0000-0002-5345-2647</orcidid></search><sort><creationdate>20190101</creationdate><title>HeteMSD: A Big Data Analytics Framework for Targeted Cyber-Attacks Detection Using Heterogeneous Multisource Data</title><author>Li, Tao ; Ye, Ziwei ; Guo, Yuanbo ; Ju, Ankang ; Ma, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-18138e361ace96f91b448cccbe8c74afe04ffcc9cb6c9411cc8ccbd11410722a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavior</topic><topic>Big Data</topic><topic>Correlation analysis</topic><topic>Cybersecurity</topic><topic>Data analysis</topic><topic>Data integration</topic><topic>Heterogeneity</topic><topic>Methods</topic><topic>Network security</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Ye, Ziwei</creatorcontrib><creatorcontrib>Guo, Yuanbo</creatorcontrib><creatorcontrib>Ju, Ankang</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tao</au><au>Ye, Ziwei</au><au>Guo, Yuanbo</au><au>Ju, Ankang</au><au>Ma, Jing</au><au>Angin, Pelin</au><au>Pelin Angin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HeteMSD: A Big Data Analytics Framework for Targeted Cyber-Attacks Detection Using Heterogeneous Multisource Data</atitle><jtitle>Security and communication networks</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>In the current enterprise network environment, multistep targeted cyber-attacks with concealment and advanced characteristics have become the main threat. Multisource security data are the prerequisite of targeted cyber-attacks detection. However, these data have characters of heterogeneity and semantic diversity, and existing attack detection methods do not take comprehensive data sources into account. Identifying and predicting attack intention from heterogeneous noisy data can be meaningful work. In this paper, we first review different data fusion mechanisms of correlating heterogeneous multisource data. On this basis, we propose a big data analytics framework for targeted cyber-attacks detection and give the basic idea of correlation analysis. Our approach will offer the ability to correlate multisource heterogeneous security data and analyze attack intention effectively.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5483918</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7818-4482</orcidid><orcidid>https://orcid.org/0000-0002-5345-2647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2019-01, Vol.2019 (2019), p.1-9 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2455787295 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Behavior Big Data Correlation analysis Cybersecurity Data analysis Data integration Heterogeneity Methods Network security Semantics |
title | HeteMSD: A Big Data Analytics Framework for Targeted Cyber-Attacks Detection Using Heterogeneous Multisource Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HeteMSD:%20A%20Big%20Data%20Analytics%20Framework%20for%20Targeted%20Cyber-Attacks%20Detection%20Using%20Heterogeneous%20Multisource%20Data&rft.jtitle=Security%20and%20communication%20networks&rft.au=Li,%20Tao&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2019/5483918&rft_dat=%3Cproquest_cross%3E2455787295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455787295&rft_id=info:pmid/&rfr_iscdi=true |