Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark

Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different qual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2017-01, Vol.2017 (2017), p.1-8
Hauptverfasser: Li, Wei, Zhang, Yiwen, Chen, Shanshan, Guo, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2017
container_start_page 1
container_title Security and communication networks
container_volume 2017
creator Li, Wei
Zhang, Yiwen
Chen, Shanshan
Guo, Xing
description Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results.
doi_str_mv 10.1155/2017/9097616
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455786226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455786226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTY_d7mWItfUFGonjyESXZjtybduJta9NebmKJHYWBm4GEGXoSOCb4gRIgRxUSNEpwoSeQOGpCEJTEmlO7-zoTvo4MQlhhLwhUfoJe58R82N9HUVbULtrFuFT3Uja3sF_ws96ZZOB1dQjA6avdH8FCWpuyGxualieYb8FU0KV-dt82i6tC8Bv92iPYKKIM52vYher6-eprexrOHm7vpZBbnTOImziSmBct0ISgRmGQMuOagOKF4nECuBRYslxmmOCNSgNRMCVCMUD2WDHLFhui0v1t79742oUmXbu1X7cuUciHUWFIqW3Xeq9y7ELwp0trbCvxnSnDaxZd28aXb-Fp-1vOFXWnY2P_0Sa9Na0wBf5pi1hb7BsB5eCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455786226</pqid></control><display><type>article</type><title>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</title><source>Wiley Online Library</source><source>EZB Electronic Journals Library</source><creator>Li, Wei ; Zhang, Yiwen ; Chen, Shanshan ; Guo, Xing</creator><contributor>Qi, Lianyong</contributor><creatorcontrib>Li, Wei ; Zhang, Yiwen ; Chen, Shanshan ; Guo, Xing ; Qi, Lianyong</creatorcontrib><description>Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2017/9097616</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Cloud computing ; Clustering ; Composition ; Distributed processing ; Efficiency ; Experiments ; Genetic algorithms ; Internet service providers ; Manufacturing ; Optimization algorithms ; Particle swarm optimization ; Population ; Principal components analysis ; Quality of service ; User requirements ; User satisfaction ; Web services</subject><ispartof>Security and communication networks, 2017-01, Vol.2017 (2017), p.1-8</ispartof><rights>Copyright © 2017 Xing Guo et al.</rights><rights>Copyright © 2017 Xing Guo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</citedby><cites>FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</cites><orcidid>0000-0001-8709-1088 ; 0000-0002-5668-9084 ; 0000-0003-2676-6744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Qi, Lianyong</contributor><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Yiwen</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><title>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</title><title>Security and communication networks</title><description>Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Composition</subject><subject>Distributed processing</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Genetic algorithms</subject><subject>Internet service providers</subject><subject>Manufacturing</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Population</subject><subject>Principal components analysis</subject><subject>Quality of service</subject><subject>User requirements</subject><subject>User satisfaction</subject><subject>Web services</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTY_d7mWItfUFGonjyESXZjtybduJta9NebmKJHYWBm4GEGXoSOCb4gRIgRxUSNEpwoSeQOGpCEJTEmlO7-zoTvo4MQlhhLwhUfoJe58R82N9HUVbULtrFuFT3Uja3sF_ws96ZZOB1dQjA6avdH8FCWpuyGxualieYb8FU0KV-dt82i6tC8Bv92iPYKKIM52vYher6-eprexrOHm7vpZBbnTOImziSmBct0ISgRmGQMuOagOKF4nECuBRYslxmmOCNSgNRMCVCMUD2WDHLFhui0v1t79742oUmXbu1X7cuUciHUWFIqW3Xeq9y7ELwp0trbCvxnSnDaxZd28aXb-Fp-1vOFXWnY2P_0Sa9Na0wBf5pi1hb7BsB5eCY</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Li, Wei</creator><creator>Zhang, Yiwen</creator><creator>Chen, Shanshan</creator><creator>Guo, Xing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8709-1088</orcidid><orcidid>https://orcid.org/0000-0002-5668-9084</orcidid><orcidid>https://orcid.org/0000-0003-2676-6744</orcidid></search><sort><creationdate>20170101</creationdate><title>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</title><author>Li, Wei ; Zhang, Yiwen ; Chen, Shanshan ; Guo, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Composition</topic><topic>Distributed processing</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Genetic algorithms</topic><topic>Internet service providers</topic><topic>Manufacturing</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Population</topic><topic>Principal components analysis</topic><topic>Quality of service</topic><topic>User requirements</topic><topic>User satisfaction</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Yiwen</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei</au><au>Zhang, Yiwen</au><au>Chen, Shanshan</au><au>Guo, Xing</au><au>Qi, Lianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</atitle><jtitle>Security and communication networks</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/9097616</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8709-1088</orcidid><orcidid>https://orcid.org/0000-0002-5668-9084</orcidid><orcidid>https://orcid.org/0000-0003-2676-6744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2017-01, Vol.2017 (2017), p.1-8
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2455786226
source Wiley Online Library; EZB Electronic Journals Library
subjects Algorithms
Cloud computing
Clustering
Composition
Distributed processing
Efficiency
Experiments
Genetic algorithms
Internet service providers
Manufacturing
Optimization algorithms
Particle swarm optimization
Population
Principal components analysis
Quality of service
User requirements
User satisfaction
Web services
title Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Service%20Composition%20Optimization%20Method%20Based%20on%20Parallel%20Particle%20Swarm%20Algorithm%20on%20Spark&rft.jtitle=Security%20and%20communication%20networks&rft.au=Li,%20Wei&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2017/9097616&rft_dat=%3Cproquest_cross%3E2455786226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455786226&rft_id=info:pmid/&rfr_iscdi=true