Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark
Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different qual...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2017-01, Vol.2017 (2017), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2017 |
creator | Li, Wei Zhang, Yiwen Chen, Shanshan Guo, Xing |
description | Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results. |
doi_str_mv | 10.1155/2017/9097616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455786226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455786226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTY_d7mWItfUFGonjyESXZjtybduJta9NebmKJHYWBm4GEGXoSOCb4gRIgRxUSNEpwoSeQOGpCEJTEmlO7-zoTvo4MQlhhLwhUfoJe58R82N9HUVbULtrFuFT3Uja3sF_ws96ZZOB1dQjA6avdH8FCWpuyGxualieYb8FU0KV-dt82i6tC8Bv92iPYKKIM52vYher6-eprexrOHm7vpZBbnTOImziSmBct0ISgRmGQMuOagOKF4nECuBRYslxmmOCNSgNRMCVCMUD2WDHLFhui0v1t79742oUmXbu1X7cuUciHUWFIqW3Xeq9y7ELwp0trbCvxnSnDaxZd28aXb-Fp-1vOFXWnY2P_0Sa9Na0wBf5pi1hb7BsB5eCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455786226</pqid></control><display><type>article</type><title>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</title><source>Wiley Online Library</source><source>EZB Electronic Journals Library</source><creator>Li, Wei ; Zhang, Yiwen ; Chen, Shanshan ; Guo, Xing</creator><contributor>Qi, Lianyong</contributor><creatorcontrib>Li, Wei ; Zhang, Yiwen ; Chen, Shanshan ; Guo, Xing ; Qi, Lianyong</creatorcontrib><description>Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2017/9097616</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Cloud computing ; Clustering ; Composition ; Distributed processing ; Efficiency ; Experiments ; Genetic algorithms ; Internet service providers ; Manufacturing ; Optimization algorithms ; Particle swarm optimization ; Population ; Principal components analysis ; Quality of service ; User requirements ; User satisfaction ; Web services</subject><ispartof>Security and communication networks, 2017-01, Vol.2017 (2017), p.1-8</ispartof><rights>Copyright © 2017 Xing Guo et al.</rights><rights>Copyright © 2017 Xing Guo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</citedby><cites>FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</cites><orcidid>0000-0001-8709-1088 ; 0000-0002-5668-9084 ; 0000-0003-2676-6744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Qi, Lianyong</contributor><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Yiwen</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><title>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</title><title>Security and communication networks</title><description>Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Composition</subject><subject>Distributed processing</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Genetic algorithms</subject><subject>Internet service providers</subject><subject>Manufacturing</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Population</subject><subject>Principal components analysis</subject><subject>Quality of service</subject><subject>User requirements</subject><subject>User satisfaction</subject><subject>Web services</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTY_d7mWItfUFGonjyESXZjtybduJta9NebmKJHYWBm4GEGXoSOCb4gRIgRxUSNEpwoSeQOGpCEJTEmlO7-zoTvo4MQlhhLwhUfoJe58R82N9HUVbULtrFuFT3Uja3sF_ws96ZZOB1dQjA6avdH8FCWpuyGxualieYb8FU0KV-dt82i6tC8Bv92iPYKKIM52vYher6-eprexrOHm7vpZBbnTOImziSmBct0ISgRmGQMuOagOKF4nECuBRYslxmmOCNSgNRMCVCMUD2WDHLFhui0v1t79742oUmXbu1X7cuUciHUWFIqW3Xeq9y7ELwp0trbCvxnSnDaxZd28aXb-Fp-1vOFXWnY2P_0Sa9Na0wBf5pi1hb7BsB5eCY</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Li, Wei</creator><creator>Zhang, Yiwen</creator><creator>Chen, Shanshan</creator><creator>Guo, Xing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8709-1088</orcidid><orcidid>https://orcid.org/0000-0002-5668-9084</orcidid><orcidid>https://orcid.org/0000-0003-2676-6744</orcidid></search><sort><creationdate>20170101</creationdate><title>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</title><author>Li, Wei ; Zhang, Yiwen ; Chen, Shanshan ; Guo, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b602f3bdf521501b3a4d4a7412089acd5053c6b020b165a6d375a7312d863ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Composition</topic><topic>Distributed processing</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Genetic algorithms</topic><topic>Internet service providers</topic><topic>Manufacturing</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Population</topic><topic>Principal components analysis</topic><topic>Quality of service</topic><topic>User requirements</topic><topic>User satisfaction</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Yiwen</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei</au><au>Zhang, Yiwen</au><au>Chen, Shanshan</au><au>Guo, Xing</au><au>Qi, Lianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark</atitle><jtitle>Security and communication networks</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Web service composition is one of the core technologies of realizing service-oriented computing. Web service composition satisfies the requirements of users to form new value-added services by composing existing services. As Cloud Computing develops, the emergence of Web services with different quality yet similar functionality has brought new challenges to service composition optimization problem. How to solve large-scale service composition in the Cloud Computing environment has become an urgent problem. To tackle this issue, this paper proposes a parallel optimization approach based on Spark distributed environment. Firstly, the parallel covering algorithm is used to cluster the Web services. Next, the multiple clustering centers obtained are used as the starting point of the particles to improve the diversity of the initial population. Then, according to the parallel data coding rules of resilient distributed dataset (RDD), the large-scale combination service is generated with the proposed algorithm named Spark Particle Swarm Optimization Algorithm (SPSO). Finally, the usage of particle elite selection strategy removes the inert particles to optimize the performance of the combination of service selection. This paper adopts real data set WS-Dream to prove the validity of the proposed method with a large number of experimental results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/9097616</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8709-1088</orcidid><orcidid>https://orcid.org/0000-0002-5668-9084</orcidid><orcidid>https://orcid.org/0000-0003-2676-6744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2017-01, Vol.2017 (2017), p.1-8 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2455786226 |
source | Wiley Online Library; EZB Electronic Journals Library |
subjects | Algorithms Cloud computing Clustering Composition Distributed processing Efficiency Experiments Genetic algorithms Internet service providers Manufacturing Optimization algorithms Particle swarm optimization Population Principal components analysis Quality of service User requirements User satisfaction Web services |
title | Service Composition Optimization Method Based on Parallel Particle Swarm Algorithm on Spark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Service%20Composition%20Optimization%20Method%20Based%20on%20Parallel%20Particle%20Swarm%20Algorithm%20on%20Spark&rft.jtitle=Security%20and%20communication%20networks&rft.au=Li,%20Wei&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2017/9097616&rft_dat=%3Cproquest_cross%3E2455786226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455786226&rft_id=info:pmid/&rfr_iscdi=true |