Distance Measurement Methods for Improved Insider Threat Detection

Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a pub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2018-01, Vol.2018 (2018), p.1-18
Hauptverfasser: Macfarlane, Richard, Griffiths, Paul, Buchanan, William J., Lo, Owen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 2018
container_start_page 1
container_title Security and communication networks
container_volume 2018
creator Macfarlane, Richard
Griffiths, Paul
Buchanan, William J.
Lo, Owen
description Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data set (CERT r4.2) and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard Distance) in order to detect changes of behaviour, which are shown to have success in determining different insider threats.
doi_str_mv 10.1155/2018/5906368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455784726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455784726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f360e45dce14f7e03bf01fc0399948bd7dda221531cab139679e9e6915d6e4a83</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpbMwoEiOE-vyVeISWj0pFLGWO3PispqJJsV0q_j2uUsHIcnfDo7vTS8gl0DsAKUeMQjmSmiquyiMyAM11ToGx498ZxCk5C2FFqQJRiAF5mDQhmrbG7BVN2HpcYxvTHJedDZnrfDZdb3z3hTabtqGx6LP50qOJ2QQj1rHp2nNy4sxHwItDH5L3p8f5-CWfvT1Px_ezvOaKxtylikLaGkG4AilfOAquplxrLcqFLaw1jIHkUJsFcK0KjRqVBmkVClPyIbnu96Z_PrcYYrXqtr5NJysmpCxKUTCV1G2vat-F4NFVG9-sjf-ugFb7lKp9StUhpcRver5sWmt2zX_6qteYDDrzpxmI9AT_AcZ3b88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455784726</pqid></control><display><type>article</type><title>Distance Measurement Methods for Improved Insider Threat Detection</title><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><creator>Macfarlane, Richard ; Griffiths, Paul ; Buchanan, William J. ; Lo, Owen</creator><contributor>Pelosi, Gerardo ; Gerardo Pelosi</contributor><creatorcontrib>Macfarlane, Richard ; Griffiths, Paul ; Buchanan, William J. ; Lo, Owen ; Pelosi, Gerardo ; Gerardo Pelosi</creatorcontrib><description>Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data set (CERT r4.2) and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard Distance) in order to detect changes of behaviour, which are shown to have success in determining different insider threats.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2018/5906368</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Change detection ; Cybersecurity ; Datasets ; Distance measurement ; Information sources ; Machine learning ; Measurement methods ; Measurement techniques ; Neural networks ; Ontology ; Principal components analysis ; Resource Description Framework-RDF ; Threats</subject><ispartof>Security and communication networks, 2018-01, Vol.2018 (2018), p.1-18</ispartof><rights>Copyright © 2018 Owen Lo et al.</rights><rights>Copyright © 2018 Owen Lo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f360e45dce14f7e03bf01fc0399948bd7dda221531cab139679e9e6915d6e4a83</citedby><cites>FETCH-LOGICAL-c360t-f360e45dce14f7e03bf01fc0399948bd7dda221531cab139679e9e6915d6e4a83</cites><orcidid>0000-0003-0201-6498 ; 0000-0003-0809-3523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Pelosi, Gerardo</contributor><contributor>Gerardo Pelosi</contributor><creatorcontrib>Macfarlane, Richard</creatorcontrib><creatorcontrib>Griffiths, Paul</creatorcontrib><creatorcontrib>Buchanan, William J.</creatorcontrib><creatorcontrib>Lo, Owen</creatorcontrib><title>Distance Measurement Methods for Improved Insider Threat Detection</title><title>Security and communication networks</title><description>Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data set (CERT r4.2) and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard Distance) in order to detect changes of behaviour, which are shown to have success in determining different insider threats.</description><subject>Change detection</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Distance measurement</subject><subject>Information sources</subject><subject>Machine learning</subject><subject>Measurement methods</subject><subject>Measurement techniques</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Principal components analysis</subject><subject>Resource Description Framework-RDF</subject><subject>Threats</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0D1PwzAQBmALgUQpbMwoEiOE-vyVeISWj0pFLGWO3PispqJJsV0q_j2uUsHIcnfDo7vTS8gl0DsAKUeMQjmSmiquyiMyAM11ToGx498ZxCk5C2FFqQJRiAF5mDQhmrbG7BVN2HpcYxvTHJedDZnrfDZdb3z3hTabtqGx6LP50qOJ2QQj1rHp2nNy4sxHwItDH5L3p8f5-CWfvT1Px_ezvOaKxtylikLaGkG4AilfOAquplxrLcqFLaw1jIHkUJsFcK0KjRqVBmkVClPyIbnu96Z_PrcYYrXqtr5NJysmpCxKUTCV1G2vat-F4NFVG9-sjf-ugFb7lKp9StUhpcRver5sWmt2zX_6qteYDDrzpxmI9AT_AcZ3b88</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Macfarlane, Richard</creator><creator>Griffiths, Paul</creator><creator>Buchanan, William J.</creator><creator>Lo, Owen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0201-6498</orcidid><orcidid>https://orcid.org/0000-0003-0809-3523</orcidid></search><sort><creationdate>20180101</creationdate><title>Distance Measurement Methods for Improved Insider Threat Detection</title><author>Macfarlane, Richard ; Griffiths, Paul ; Buchanan, William J. ; Lo, Owen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f360e45dce14f7e03bf01fc0399948bd7dda221531cab139679e9e6915d6e4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Change detection</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Distance measurement</topic><topic>Information sources</topic><topic>Machine learning</topic><topic>Measurement methods</topic><topic>Measurement techniques</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Principal components analysis</topic><topic>Resource Description Framework-RDF</topic><topic>Threats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macfarlane, Richard</creatorcontrib><creatorcontrib>Griffiths, Paul</creatorcontrib><creatorcontrib>Buchanan, William J.</creatorcontrib><creatorcontrib>Lo, Owen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macfarlane, Richard</au><au>Griffiths, Paul</au><au>Buchanan, William J.</au><au>Lo, Owen</au><au>Pelosi, Gerardo</au><au>Gerardo Pelosi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance Measurement Methods for Improved Insider Threat Detection</atitle><jtitle>Security and communication networks</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data set (CERT r4.2) and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard Distance) in order to detect changes of behaviour, which are shown to have success in determining different insider threats.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/5906368</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0201-6498</orcidid><orcidid>https://orcid.org/0000-0003-0809-3523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2018-01, Vol.2018 (2018), p.1-18
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2455784726
source Free E-Journal (出版社公開部分のみ); Wiley Open Access; Alma/SFX Local Collection
subjects Change detection
Cybersecurity
Datasets
Distance measurement
Information sources
Machine learning
Measurement methods
Measurement techniques
Neural networks
Ontology
Principal components analysis
Resource Description Framework-RDF
Threats
title Distance Measurement Methods for Improved Insider Threat Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20Measurement%20Methods%20for%20Improved%20Insider%20Threat%20Detection&rft.jtitle=Security%20and%20communication%20networks&rft.au=Macfarlane,%20Richard&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2018/5906368&rft_dat=%3Cproquest_cross%3E2455784726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455784726&rft_id=info:pmid/&rfr_iscdi=true