A Network-Layer QoE Model for YouTube Live in Wireless Networks

YouTube Live is one of the most popular services on the Internet, enabling easy streaming of a live video with the acceptable video quality. Thus, understanding user perception of this service is of the utmost importance for network operators. As in other video streaming services, YouTube Live traff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.70237-70252
Hauptverfasser: Jimenez, Luis Roberto, Solera, Marta, Toril, Matias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70252
container_issue
container_start_page 70237
container_title IEEE access
container_volume 7
creator Jimenez, Luis Roberto
Solera, Marta
Toril, Matias
description YouTube Live is one of the most popular services on the Internet, enabling easy streaming of a live video with the acceptable video quality. Thus, understanding user perception of this service is of the utmost importance for network operators. As in other video streaming services, YouTube Live traffic is affected by delays and interruptions due to unfavorable network conditions, which translate into unacceptable initial reproduction times, image freezes, or abrupt changes in image quality. Detecting these events is key to ensure an adequate quality of experience (QoE). Unfortunately, data encryption makes it very difficult for operators to monitor the QoE from packet-level data collected in network interfaces. In this paper, an analytical model to estimate the QoE for encrypted YouTube Live service from packet-level data collected in the interfaces of a wireless network is presented. The inputs to the model are TCP/IP metrics, from which four service key performance indicators (S-KPIs) are estimated: initial video play start time, video interruption duration, video interruption frequency, and image quality. The model is developed with an experimental platform consisting of a live streaming server, a terminal agent, a radio access network (e.g., Wi-Fi access point), a network-level emulator, a probe software, and a man-in-the-middle proxy. Model assessment is carried out by comparing the S-KPI estimates with measurements from the terminal agent under different network conditions introduced by the network emulator.
doi_str_mv 10.1109/ACCESS.2019.2918433
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455645714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8721061</ieee_id><doaj_id>oai_doaj_org_article_cc7fd92ceafc4b64b7b3cc31f8457158</doaj_id><sourcerecordid>2455645714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-cad65d756b2954b44a50239dfea12230650fea83911448db7eb320b35b3663203</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-53sicppWohKtKKeFp2Ny-SGrt1N1H6701NLb7LG4aZeY-JojFGE4yRvJrOZvPlckIQlhMiccYoPYkGBAuZUE7F6T98Ho1CWKNuso7i6SC6nsYP0Hw7_57kegc-fnLz-N4VUMel8_Gra1etgTivviCuNvFL5aGGEP5M4SI6K3UdYHTYw-j5Zr6a3SX54-1iNs0Ty1DWJFYXghcpF4ZIzgxjmiNCZVGCxoRQJDjqYEYlxoxlhUnBUIIM5YYK0SE6jBZ9buH0Wm199aH9TjldqV_C-TelfVPZGpS1aVlIYkGXlhnBTGqotRSXGeMp5lmXddlnbb37bCE0au1av-neV4RxLvYy1qlor7LeheChPF7FSO2LV33xal-8OhTfuca9qwKAoyNLCUYC0x9_mHw8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455645714</pqid></control><display><type>article</type><title>A Network-Layer QoE Model for YouTube Live in Wireless Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jimenez, Luis Roberto ; Solera, Marta ; Toril, Matias</creator><creatorcontrib>Jimenez, Luis Roberto ; Solera, Marta ; Toril, Matias</creatorcontrib><description>YouTube Live is one of the most popular services on the Internet, enabling easy streaming of a live video with the acceptable video quality. Thus, understanding user perception of this service is of the utmost importance for network operators. As in other video streaming services, YouTube Live traffic is affected by delays and interruptions due to unfavorable network conditions, which translate into unacceptable initial reproduction times, image freezes, or abrupt changes in image quality. Detecting these events is key to ensure an adequate quality of experience (QoE). Unfortunately, data encryption makes it very difficult for operators to monitor the QoE from packet-level data collected in network interfaces. In this paper, an analytical model to estimate the QoE for encrypted YouTube Live service from packet-level data collected in the interfaces of a wireless network is presented. The inputs to the model are TCP/IP metrics, from which four service key performance indicators (S-KPIs) are estimated: initial video play start time, video interruption duration, video interruption frequency, and image quality. The model is developed with an experimental platform consisting of a live streaming server, a terminal agent, a radio access network (e.g., Wi-Fi access point), a network-level emulator, a probe software, and a man-in-the-middle proxy. Model assessment is carried out by comparing the S-KPI estimates with measurements from the terminal agent under different network conditions introduced by the network emulator.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2918433</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data encryption ; Delays ; Digital media ; Emulators ; Encryption ; HTTP adaptive streaming (HAS) ; Image quality ; Mathematical models ; modeling ; network emulator ; Operators ; Quality of experience ; quality of experience (QoE) ; service key performance indicator (S-KPI) ; Streaming media ; TCP/IP (protocol) ; Traffic delay ; Video transmission ; Wireless networks ; YouTube</subject><ispartof>IEEE access, 2019, Vol.7, p.70237-70252</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-cad65d756b2954b44a50239dfea12230650fea83911448db7eb320b35b3663203</citedby><cites>FETCH-LOGICAL-c408t-cad65d756b2954b44a50239dfea12230650fea83911448db7eb320b35b3663203</cites><orcidid>0000-0001-5371-7353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8721061$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Jimenez, Luis Roberto</creatorcontrib><creatorcontrib>Solera, Marta</creatorcontrib><creatorcontrib>Toril, Matias</creatorcontrib><title>A Network-Layer QoE Model for YouTube Live in Wireless Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>YouTube Live is one of the most popular services on the Internet, enabling easy streaming of a live video with the acceptable video quality. Thus, understanding user perception of this service is of the utmost importance for network operators. As in other video streaming services, YouTube Live traffic is affected by delays and interruptions due to unfavorable network conditions, which translate into unacceptable initial reproduction times, image freezes, or abrupt changes in image quality. Detecting these events is key to ensure an adequate quality of experience (QoE). Unfortunately, data encryption makes it very difficult for operators to monitor the QoE from packet-level data collected in network interfaces. In this paper, an analytical model to estimate the QoE for encrypted YouTube Live service from packet-level data collected in the interfaces of a wireless network is presented. The inputs to the model are TCP/IP metrics, from which four service key performance indicators (S-KPIs) are estimated: initial video play start time, video interruption duration, video interruption frequency, and image quality. The model is developed with an experimental platform consisting of a live streaming server, a terminal agent, a radio access network (e.g., Wi-Fi access point), a network-level emulator, a probe software, and a man-in-the-middle proxy. Model assessment is carried out by comparing the S-KPI estimates with measurements from the terminal agent under different network conditions introduced by the network emulator.</description><subject>Data encryption</subject><subject>Delays</subject><subject>Digital media</subject><subject>Emulators</subject><subject>Encryption</subject><subject>HTTP adaptive streaming (HAS)</subject><subject>Image quality</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>network emulator</subject><subject>Operators</subject><subject>Quality of experience</subject><subject>quality of experience (QoE)</subject><subject>service key performance indicator (S-KPI)</subject><subject>Streaming media</subject><subject>TCP/IP (protocol)</subject><subject>Traffic delay</subject><subject>Video transmission</subject><subject>Wireless networks</subject><subject>YouTube</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUDKJgqf0FvQQ8p-53sicppWohKtKKeFp2Ny-SGrt1N1H6701NLb7LG4aZeY-JojFGE4yRvJrOZvPlckIQlhMiccYoPYkGBAuZUE7F6T98Ho1CWKNuso7i6SC6nsYP0Hw7_57kegc-fnLz-N4VUMel8_Gra1etgTivviCuNvFL5aGGEP5M4SI6K3UdYHTYw-j5Zr6a3SX54-1iNs0Ty1DWJFYXghcpF4ZIzgxjmiNCZVGCxoRQJDjqYEYlxoxlhUnBUIIM5YYK0SE6jBZ9buH0Wm199aH9TjldqV_C-TelfVPZGpS1aVlIYkGXlhnBTGqotRSXGeMp5lmXddlnbb37bCE0au1av-neV4RxLvYy1qlor7LeheChPF7FSO2LV33xal-8OhTfuca9qwKAoyNLCUYC0x9_mHw8</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Jimenez, Luis Roberto</creator><creator>Solera, Marta</creator><creator>Toril, Matias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5371-7353</orcidid></search><sort><creationdate>2019</creationdate><title>A Network-Layer QoE Model for YouTube Live in Wireless Networks</title><author>Jimenez, Luis Roberto ; Solera, Marta ; Toril, Matias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-cad65d756b2954b44a50239dfea12230650fea83911448db7eb320b35b3663203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data encryption</topic><topic>Delays</topic><topic>Digital media</topic><topic>Emulators</topic><topic>Encryption</topic><topic>HTTP adaptive streaming (HAS)</topic><topic>Image quality</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>network emulator</topic><topic>Operators</topic><topic>Quality of experience</topic><topic>quality of experience (QoE)</topic><topic>service key performance indicator (S-KPI)</topic><topic>Streaming media</topic><topic>TCP/IP (protocol)</topic><topic>Traffic delay</topic><topic>Video transmission</topic><topic>Wireless networks</topic><topic>YouTube</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez, Luis Roberto</creatorcontrib><creatorcontrib>Solera, Marta</creatorcontrib><creatorcontrib>Toril, Matias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez, Luis Roberto</au><au>Solera, Marta</au><au>Toril, Matias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Network-Layer QoE Model for YouTube Live in Wireless Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>70237</spage><epage>70252</epage><pages>70237-70252</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>YouTube Live is one of the most popular services on the Internet, enabling easy streaming of a live video with the acceptable video quality. Thus, understanding user perception of this service is of the utmost importance for network operators. As in other video streaming services, YouTube Live traffic is affected by delays and interruptions due to unfavorable network conditions, which translate into unacceptable initial reproduction times, image freezes, or abrupt changes in image quality. Detecting these events is key to ensure an adequate quality of experience (QoE). Unfortunately, data encryption makes it very difficult for operators to monitor the QoE from packet-level data collected in network interfaces. In this paper, an analytical model to estimate the QoE for encrypted YouTube Live service from packet-level data collected in the interfaces of a wireless network is presented. The inputs to the model are TCP/IP metrics, from which four service key performance indicators (S-KPIs) are estimated: initial video play start time, video interruption duration, video interruption frequency, and image quality. The model is developed with an experimental platform consisting of a live streaming server, a terminal agent, a radio access network (e.g., Wi-Fi access point), a network-level emulator, a probe software, and a man-in-the-middle proxy. Model assessment is carried out by comparing the S-KPI estimates with measurements from the terminal agent under different network conditions introduced by the network emulator.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2918433</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5371-7353</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.70237-70252
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455645714
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Data encryption
Delays
Digital media
Emulators
Encryption
HTTP adaptive streaming (HAS)
Image quality
Mathematical models
modeling
network emulator
Operators
Quality of experience
quality of experience (QoE)
service key performance indicator (S-KPI)
Streaming media
TCP/IP (protocol)
Traffic delay
Video transmission
Wireless networks
YouTube
title A Network-Layer QoE Model for YouTube Live in Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Network-Layer%20QoE%20Model%20for%20YouTube%20Live%20in%20Wireless%20Networks&rft.jtitle=IEEE%20access&rft.au=Jimenez,%20Luis%20Roberto&rft.date=2019&rft.volume=7&rft.spage=70237&rft.epage=70252&rft.pages=70237-70252&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2918433&rft_dat=%3Cproquest_ieee_%3E2455645714%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455645714&rft_id=info:pmid/&rft_ieee_id=8721061&rft_doaj_id=oai_doaj_org_article_cc7fd92ceafc4b64b7b3cc31f8457158&rfr_iscdi=true