A Deep Transfer Model With Wasserstein Distance Guided Multi-Adversarial Networks for Bearing Fault Diagnosis Under Different Working Conditions
In recent years, intelligent fault diagnosis technology with the deep learning algorithm has been widely used in the manufacturing industry for substituting time-consuming human analysis method to enhance the efficiency of fault diagnosis. The rolling bearing as the connection between the rotor and...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.65303-65318 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!