The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides

Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement predictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.54305-54311
Hauptverfasser: Xie, Peihong, Zhou, Aiguo, Chai, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54311
container_issue
container_start_page 54305
container_title IEEE access
container_volume 7
creator Xie, Peihong
Zhou, Aiguo
Chai, Bo
description Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors.
doi_str_mv 10.1109/ACCESS.2019.2912419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455644170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8695059</ieee_id><doaj_id>oai_doaj_org_article_eb35ac15172f412288ab82dd842734ea</doaj_id><sourcerecordid>2455644170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</originalsourceid><addsrcrecordid>eNpNkU9r2zAYh83YYKXtJ-jFsMt2cKq_tnQMWbcGHDZIdhay9DpRcCxPUg799lXmtEwXSS-_3yPBUxQPGC0wRvJxuVo9bbcLgrBcEIkJw_JDcUNwLSvKaf3xv_Pn4j7GI8pL5BFvboq4O0C5nKbBGZ2cH0vfl60f9-X24EOqdhBO5QZOPrx8bbe7zbd8SQdvy5z87uI0aAMnGFP5O4B15o2wOQ_J9dokH6r1aM8GbNnq0cbBWYh3xadeDxHur_tt8efH0271XLW_fq5Xy7YyjItUSYk6S42FvmPAELEGW9QJK7g2kjICtqYcWVo3-BIzqKmZxL3uTM0bYiW9LdYz13p9VFNwJx1elNdO_Rv4sFc6JGcGUNDRTMUcN6RnmBAhdCeItYKRhjLQmfVlZk3B_z1DTOroz2HM31eEcV4zhhuUU3ROmeBjDNC_v4qRushSsyx1kaWusnLrYW45AHhviCwIcUlfAZBtkE4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455644170</pqid></control><display><type>article</type><title>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xie, Peihong ; Zhou, Aiguo ; Chai, Bo</creator><creatorcontrib>Xie, Peihong ; Zhou, Aiguo ; Chai, Bo</creatorcontrib><description>Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2912419</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Displacement ; Dynamic models ; Early warning systems ; Failure modes ; Geological hazards ; Geology ; Landslide ; Landslides ; Landslides &amp; mudslides ; Loess ; Logic gates ; long-term stability ; Monitoring ; Predictive models ; Rainfall ; Roads ; South-Western China ; Static models ; Strain ; Terrain factors</subject><ispartof>IEEE access, 2019, Vol.7, p.54305-54311</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</citedby><cites>FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</cites><orcidid>0000-0002-5491-6773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8695059$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xie, Peihong</creatorcontrib><creatorcontrib>Zhou, Aiguo</creatorcontrib><creatorcontrib>Chai, Bo</creatorcontrib><title>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</title><title>IEEE access</title><addtitle>Access</addtitle><description>Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors.</description><subject>Displacement</subject><subject>Dynamic models</subject><subject>Early warning systems</subject><subject>Failure modes</subject><subject>Geological hazards</subject><subject>Geology</subject><subject>Landslide</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Loess</subject><subject>Logic gates</subject><subject>long-term stability</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Rainfall</subject><subject>Roads</subject><subject>South-Western China</subject><subject>Static models</subject><subject>Strain</subject><subject>Terrain factors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r2zAYh83YYKXtJ-jFsMt2cKq_tnQMWbcGHDZIdhay9DpRcCxPUg799lXmtEwXSS-_3yPBUxQPGC0wRvJxuVo9bbcLgrBcEIkJw_JDcUNwLSvKaf3xv_Pn4j7GI8pL5BFvboq4O0C5nKbBGZ2cH0vfl60f9-X24EOqdhBO5QZOPrx8bbe7zbd8SQdvy5z87uI0aAMnGFP5O4B15o2wOQ_J9dokH6r1aM8GbNnq0cbBWYh3xadeDxHur_tt8efH0271XLW_fq5Xy7YyjItUSYk6S42FvmPAELEGW9QJK7g2kjICtqYcWVo3-BIzqKmZxL3uTM0bYiW9LdYz13p9VFNwJx1elNdO_Rv4sFc6JGcGUNDRTMUcN6RnmBAhdCeItYKRhjLQmfVlZk3B_z1DTOroz2HM31eEcV4zhhuUU3ROmeBjDNC_v4qRushSsyx1kaWusnLrYW45AHhviCwIcUlfAZBtkE4</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xie, Peihong</creator><creator>Zhou, Aiguo</creator><creator>Chai, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5491-6773</orcidid></search><sort><creationdate>2019</creationdate><title>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</title><author>Xie, Peihong ; Zhou, Aiguo ; Chai, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Displacement</topic><topic>Dynamic models</topic><topic>Early warning systems</topic><topic>Failure modes</topic><topic>Geological hazards</topic><topic>Geology</topic><topic>Landslide</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Loess</topic><topic>Logic gates</topic><topic>long-term stability</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Rainfall</topic><topic>Roads</topic><topic>South-Western China</topic><topic>Static models</topic><topic>Strain</topic><topic>Terrain factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Peihong</creatorcontrib><creatorcontrib>Zhou, Aiguo</creatorcontrib><creatorcontrib>Chai, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Peihong</au><au>Zhou, Aiguo</au><au>Chai, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>54305</spage><epage>54311</epage><pages>54305-54311</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2912419</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5491-6773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.54305-54311
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455644170
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Displacement
Dynamic models
Early warning systems
Failure modes
Geological hazards
Geology
Landslide
Landslides
Landslides & mudslides
Loess
Logic gates
long-term stability
Monitoring
Predictive models
Rainfall
Roads
South-Western China
Static models
Strain
Terrain factors
title The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Application%20of%20Long%20Short-Term%20Memory(LSTM)%20Method%20on%20Displacement%20Prediction%20of%20Multifactor-Induced%20Landslides&rft.jtitle=IEEE%20access&rft.au=Xie,%20Peihong&rft.date=2019&rft.volume=7&rft.spage=54305&rft.epage=54311&rft.pages=54305-54311&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2912419&rft_dat=%3Cproquest_cross%3E2455644170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455644170&rft_id=info:pmid/&rft_ieee_id=8695059&rft_doaj_id=oai_doaj_org_article_eb35ac15172f412288ab82dd842734ea&rfr_iscdi=true