The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides
Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement predictio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.54305-54311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54311 |
---|---|
container_issue | |
container_start_page | 54305 |
container_title | IEEE access |
container_volume | 7 |
creator | Xie, Peihong Zhou, Aiguo Chai, Bo |
description | Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors. |
doi_str_mv | 10.1109/ACCESS.2019.2912419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455644170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8695059</ieee_id><doaj_id>oai_doaj_org_article_eb35ac15172f412288ab82dd842734ea</doaj_id><sourcerecordid>2455644170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</originalsourceid><addsrcrecordid>eNpNkU9r2zAYh83YYKXtJ-jFsMt2cKq_tnQMWbcGHDZIdhay9DpRcCxPUg799lXmtEwXSS-_3yPBUxQPGC0wRvJxuVo9bbcLgrBcEIkJw_JDcUNwLSvKaf3xv_Pn4j7GI8pL5BFvboq4O0C5nKbBGZ2cH0vfl60f9-X24EOqdhBO5QZOPrx8bbe7zbd8SQdvy5z87uI0aAMnGFP5O4B15o2wOQ_J9dokH6r1aM8GbNnq0cbBWYh3xadeDxHur_tt8efH0271XLW_fq5Xy7YyjItUSYk6S42FvmPAELEGW9QJK7g2kjICtqYcWVo3-BIzqKmZxL3uTM0bYiW9LdYz13p9VFNwJx1elNdO_Rv4sFc6JGcGUNDRTMUcN6RnmBAhdCeItYKRhjLQmfVlZk3B_z1DTOroz2HM31eEcV4zhhuUU3ROmeBjDNC_v4qRushSsyx1kaWusnLrYW45AHhviCwIcUlfAZBtkE4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455644170</pqid></control><display><type>article</type><title>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xie, Peihong ; Zhou, Aiguo ; Chai, Bo</creator><creatorcontrib>Xie, Peihong ; Zhou, Aiguo ; Chai, Bo</creatorcontrib><description>Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2912419</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Displacement ; Dynamic models ; Early warning systems ; Failure modes ; Geological hazards ; Geology ; Landslide ; Landslides ; Landslides & mudslides ; Loess ; Logic gates ; long-term stability ; Monitoring ; Predictive models ; Rainfall ; Roads ; South-Western China ; Static models ; Strain ; Terrain factors</subject><ispartof>IEEE access, 2019, Vol.7, p.54305-54311</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</citedby><cites>FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</cites><orcidid>0000-0002-5491-6773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8695059$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xie, Peihong</creatorcontrib><creatorcontrib>Zhou, Aiguo</creatorcontrib><creatorcontrib>Chai, Bo</creatorcontrib><title>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</title><title>IEEE access</title><addtitle>Access</addtitle><description>Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors.</description><subject>Displacement</subject><subject>Dynamic models</subject><subject>Early warning systems</subject><subject>Failure modes</subject><subject>Geological hazards</subject><subject>Geology</subject><subject>Landslide</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Loess</subject><subject>Logic gates</subject><subject>long-term stability</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Rainfall</subject><subject>Roads</subject><subject>South-Western China</subject><subject>Static models</subject><subject>Strain</subject><subject>Terrain factors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r2zAYh83YYKXtJ-jFsMt2cKq_tnQMWbcGHDZIdhay9DpRcCxPUg799lXmtEwXSS-_3yPBUxQPGC0wRvJxuVo9bbcLgrBcEIkJw_JDcUNwLSvKaf3xv_Pn4j7GI8pL5BFvboq4O0C5nKbBGZ2cH0vfl60f9-X24EOqdhBO5QZOPrx8bbe7zbd8SQdvy5z87uI0aAMnGFP5O4B15o2wOQ_J9dokH6r1aM8GbNnq0cbBWYh3xadeDxHur_tt8efH0271XLW_fq5Xy7YyjItUSYk6S42FvmPAELEGW9QJK7g2kjICtqYcWVo3-BIzqKmZxL3uTM0bYiW9LdYz13p9VFNwJx1elNdO_Rv4sFc6JGcGUNDRTMUcN6RnmBAhdCeItYKRhjLQmfVlZk3B_z1DTOroz2HM31eEcV4zhhuUU3ROmeBjDNC_v4qRushSsyx1kaWusnLrYW45AHhviCwIcUlfAZBtkE4</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xie, Peihong</creator><creator>Zhou, Aiguo</creator><creator>Chai, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5491-6773</orcidid></search><sort><creationdate>2019</creationdate><title>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</title><author>Xie, Peihong ; Zhou, Aiguo ; Chai, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-990bd3cdefb4e402dc1d0b8d85ac9342ed6350d3671d3cdc076491fabc6572d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Displacement</topic><topic>Dynamic models</topic><topic>Early warning systems</topic><topic>Failure modes</topic><topic>Geological hazards</topic><topic>Geology</topic><topic>Landslide</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Loess</topic><topic>Logic gates</topic><topic>long-term stability</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Rainfall</topic><topic>Roads</topic><topic>South-Western China</topic><topic>Static models</topic><topic>Strain</topic><topic>Terrain factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Peihong</creatorcontrib><creatorcontrib>Zhou, Aiguo</creatorcontrib><creatorcontrib>Chai, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Peihong</au><au>Zhou, Aiguo</au><au>Chai, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>54305</spage><epage>54311</epage><pages>54305-54311</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Landslides induced by rainfall frequently happen in South-western China where steep slopes, loess plateau occur. Thus, it is empirical to build the early warning system to evaluate the potential of landslide hazards. However, current researches mostly focus the static model on displacement prediction. The landslide is a nonlinear hazard characterized by dynamic features. Therefore, the dynamic model should be investigated to more precisely predict the displacement associated with the landslide. In this paper, Laowuji Landslide is adopted to investigate the dynamic failure mode. The displacement of the Laowuji landslide contains the trend and periodic component. The trend component is predicted by the empirical mode decomposition and the periodic component is predicted by the long short-term memory (LSTM) method. Model's input includes multiple factors of geological conditions, rainfall intensity, and human activities. The measured data and the predicted data show good consistency. In addition, the predicted results of the periodic component show that the performance of the LSTM has good characteristics of dynamic feature. Compared with a traditional mechanical model, the hybrid model is more powerful to predict the landslide displacement triggered by multiplying factors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2912419</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5491-6773</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.54305-54311 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455644170 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Displacement Dynamic models Early warning systems Failure modes Geological hazards Geology Landslide Landslides Landslides & mudslides Loess Logic gates long-term stability Monitoring Predictive models Rainfall Roads South-Western China Static models Strain Terrain factors |
title | The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Application%20of%20Long%20Short-Term%20Memory(LSTM)%20Method%20on%20Displacement%20Prediction%20of%20Multifactor-Induced%20Landslides&rft.jtitle=IEEE%20access&rft.au=Xie,%20Peihong&rft.date=2019&rft.volume=7&rft.spage=54305&rft.epage=54311&rft.pages=54305-54311&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2912419&rft_dat=%3Cproquest_cross%3E2455644170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455644170&rft_id=info:pmid/&rft_ieee_id=8695059&rft_doaj_id=oai_doaj_org_article_eb35ac15172f412288ab82dd842734ea&rfr_iscdi=true |