EXTES : An Ex ecution- T ime E stimation S cheme for Efficient Computational Science and Engineering Simulation via Machine Learning

In recent years, computational science and engineering (CSE) simulations using high-performance computing resources are actively exploited to solve complex domain-specific problems. Thanks to the remarkable advance of IT technology, the CSE community is challenging more complex and difficult problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.98993-99002
Hauptverfasser: Kim, Seounghyeon, Suh, Young-Kyoon, Kim, Jeeyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99002
container_issue
container_start_page 98993
container_title IEEE access
container_volume 7
creator Kim, Seounghyeon
Suh, Young-Kyoon
Kim, Jeeyoung
description In recent years, computational science and engineering (CSE) simulations using high-performance computing resources are actively exploited to solve complex domain-specific problems. Thanks to the remarkable advance of IT technology, the CSE community is challenging more complex and difficult problems than ever before, by running these simulations online. In this regard, we often witness that 1) online simulation users suffer from knowing little about the estimated termination time of their launched simulations and 2) the limited computing resources are squandered by wrong input that leads the simulations to run forever. To address such issues, we propose a novel execution time estimation scheme, termed EXTES, using machine learning techniques for more efficient online CSE simulations. With a large amount of existing provenance data, the EXTES scheme trains a suite of models rooted from classification, regression, and a hybrid of the two and utilize these models to estimate the execution time for specified input parameters for simulations. In the experiments on real simulation data, our proposed models achieved about 73% accuracy on average in execution time estimation across 16 simulation programs taken from a variety of CSE fields. In the meantime, the overhead incurred by the training and estimation is almost negligible.
doi_str_mv 10.1109/ACCESS.2019.2929800
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455643145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455643145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1225-39573be4d377affd478a7674a9eeb3472aaeca4e476cc71cdb438b8cf1995b5c3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsGh_gZsLrlMzr0ziroTxARUXqeAuTCaTdkqT1JlEdO8Pd2K78G7u5ZzD5fAhdIPjBcZxdrfMc1kUCxLjbEEykqVxfIZmBCdZRDlNzv_dl2ju_S4OkwaJixn6ke9rWcA9LDuQX2D0ONi-i2ANtjUgwQ-2VZMEBeitCVrTO5BNY7U13QB53x7G4S-h9lBMojaguhpkt7GdMc52GyhsO-6Pbz6tghelt8GDlVGuC_41umjU3pv5aV-htwe5zp-i1evjc75cRRoTwiMaGtPKsJoKoZqmZiJVIhFMZcZUlAmilNGKGSYSrQXWdcVoWqW6wVnGK67pFbo9_j24_mM0fih3_ehCcV8SxnnCKGY8pOgxpV3vvTNNeXABgvsucVxOxMsj8XIiXp6I01-ftXP7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455643145</pqid></control><display><type>article</type><title>EXTES : An Ex ecution- T ime E stimation S cheme for Efficient Computational Science and Engineering Simulation via Machine Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Seounghyeon ; Suh, Young-Kyoon ; Kim, Jeeyoung</creator><creatorcontrib>Kim, Seounghyeon ; Suh, Young-Kyoon ; Kim, Jeeyoung</creatorcontrib><description>In recent years, computational science and engineering (CSE) simulations using high-performance computing resources are actively exploited to solve complex domain-specific problems. Thanks to the remarkable advance of IT technology, the CSE community is challenging more complex and difficult problems than ever before, by running these simulations online. In this regard, we often witness that 1) online simulation users suffer from knowing little about the estimated termination time of their launched simulations and 2) the limited computing resources are squandered by wrong input that leads the simulations to run forever. To address such issues, we propose a novel execution time estimation scheme, termed EXTES, using machine learning techniques for more efficient online CSE simulations. With a large amount of existing provenance data, the EXTES scheme trains a suite of models rooted from classification, regression, and a hybrid of the two and utilize these models to estimate the execution time for specified input parameters for simulations. In the experiments on real simulation data, our proposed models achieved about 73% accuracy on average in execution time estimation across 16 simulation programs taken from a variety of CSE fields. In the meantime, the overhead incurred by the training and estimation is almost negligible.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2929800</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Engineering education ; Machine learning ; Model accuracy ; Simulation</subject><ispartof>IEEE access, 2019, Vol.7, p.98993-99002</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1225-39573be4d377affd478a7674a9eeb3472aaeca4e476cc71cdb438b8cf1995b5c3</citedby><cites>FETCH-LOGICAL-c1225-39573be4d377affd478a7674a9eeb3472aaeca4e476cc71cdb438b8cf1995b5c3</cites><orcidid>0000-0003-3124-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Seounghyeon</creatorcontrib><creatorcontrib>Suh, Young-Kyoon</creatorcontrib><creatorcontrib>Kim, Jeeyoung</creatorcontrib><title>EXTES : An Ex ecution- T ime E stimation S cheme for Efficient Computational Science and Engineering Simulation via Machine Learning</title><title>IEEE access</title><description>In recent years, computational science and engineering (CSE) simulations using high-performance computing resources are actively exploited to solve complex domain-specific problems. Thanks to the remarkable advance of IT technology, the CSE community is challenging more complex and difficult problems than ever before, by running these simulations online. In this regard, we often witness that 1) online simulation users suffer from knowing little about the estimated termination time of their launched simulations and 2) the limited computing resources are squandered by wrong input that leads the simulations to run forever. To address such issues, we propose a novel execution time estimation scheme, termed EXTES, using machine learning techniques for more efficient online CSE simulations. With a large amount of existing provenance data, the EXTES scheme trains a suite of models rooted from classification, regression, and a hybrid of the two and utilize these models to estimate the execution time for specified input parameters for simulations. In the experiments on real simulation data, our proposed models achieved about 73% accuracy on average in execution time estimation across 16 simulation programs taken from a variety of CSE fields. In the meantime, the overhead incurred by the training and estimation is almost negligible.</description><subject>Engineering education</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Simulation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRsGh_gZsLrlMzr0ziroTxARUXqeAuTCaTdkqT1JlEdO8Pd2K78G7u5ZzD5fAhdIPjBcZxdrfMc1kUCxLjbEEykqVxfIZmBCdZRDlNzv_dl2ju_S4OkwaJixn6ke9rWcA9LDuQX2D0ONi-i2ANtjUgwQ-2VZMEBeitCVrTO5BNY7U13QB53x7G4S-h9lBMojaguhpkt7GdMc52GyhsO-6Pbz6tghelt8GDlVGuC_41umjU3pv5aV-htwe5zp-i1evjc75cRRoTwiMaGtPKsJoKoZqmZiJVIhFMZcZUlAmilNGKGSYSrQXWdcVoWqW6wVnGK67pFbo9_j24_mM0fih3_ehCcV8SxnnCKGY8pOgxpV3vvTNNeXABgvsucVxOxMsj8XIiXp6I01-ftXP7</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kim, Seounghyeon</creator><creator>Suh, Young-Kyoon</creator><creator>Kim, Jeeyoung</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3124-2566</orcidid></search><sort><creationdate>2019</creationdate><title>EXTES : An Ex ecution- T ime E stimation S cheme for Efficient Computational Science and Engineering Simulation via Machine Learning</title><author>Kim, Seounghyeon ; Suh, Young-Kyoon ; Kim, Jeeyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1225-39573be4d377affd478a7674a9eeb3472aaeca4e476cc71cdb438b8cf1995b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering education</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seounghyeon</creatorcontrib><creatorcontrib>Suh, Young-Kyoon</creatorcontrib><creatorcontrib>Kim, Jeeyoung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seounghyeon</au><au>Suh, Young-Kyoon</au><au>Kim, Jeeyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXTES : An Ex ecution- T ime E stimation S cheme for Efficient Computational Science and Engineering Simulation via Machine Learning</atitle><jtitle>IEEE access</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>98993</spage><epage>99002</epage><pages>98993-99002</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>In recent years, computational science and engineering (CSE) simulations using high-performance computing resources are actively exploited to solve complex domain-specific problems. Thanks to the remarkable advance of IT technology, the CSE community is challenging more complex and difficult problems than ever before, by running these simulations online. In this regard, we often witness that 1) online simulation users suffer from knowing little about the estimated termination time of their launched simulations and 2) the limited computing resources are squandered by wrong input that leads the simulations to run forever. To address such issues, we propose a novel execution time estimation scheme, termed EXTES, using machine learning techniques for more efficient online CSE simulations. With a large amount of existing provenance data, the EXTES scheme trains a suite of models rooted from classification, regression, and a hybrid of the two and utilize these models to estimate the execution time for specified input parameters for simulations. In the experiments on real simulation data, our proposed models achieved about 73% accuracy on average in execution time estimation across 16 simulation programs taken from a variety of CSE fields. In the meantime, the overhead incurred by the training and estimation is almost negligible.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2019.2929800</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3124-2566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.98993-99002
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455643145
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Engineering education
Machine learning
Model accuracy
Simulation
title EXTES : An Ex ecution- T ime E stimation S cheme for Efficient Computational Science and Engineering Simulation via Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXTES%20:%20An%20Ex%20ecution-%20T%20ime%20E%20stimation%20S%20cheme%20for%20Efficient%20Computational%20Science%20and%20Engineering%20Simulation%20via%20Machine%20Learning&rft.jtitle=IEEE%20access&rft.au=Kim,%20Seounghyeon&rft.date=2019&rft.volume=7&rft.spage=98993&rft.epage=99002&rft.pages=98993-99002&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2019.2929800&rft_dat=%3Cproquest_cross%3E2455643145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455643145&rft_id=info:pmid/&rfr_iscdi=true