GMM Clustering-Based Decision Trees Considering Fault Rate and Cluster Validity for Analog Circuit Fault Diagnosis

Traditional decision trees for fault diagnosis often use an ID3 construction algorithm. For promoting the accuracy and efficiency of decision trees, considering the cluster validity and fault rates, this paper proposes two improved trees, CV-DTs and FR-DTs. This paper mainly has two highlights. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.140637-140650
Hauptverfasser: Shi, Junyou, He, Qingjie, Wang, Zili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140650
container_issue
container_start_page 140637
container_title IEEE access
container_volume 7
creator Shi, Junyou
He, Qingjie
Wang, Zili
description Traditional decision trees for fault diagnosis often use an ID3 construction algorithm. For promoting the accuracy and efficiency of decision trees, considering the cluster validity and fault rates, this paper proposes two improved trees, CV-DTs and FR-DTs. This paper mainly has two highlights. The first highlight is to propose a CV-DT which is constructed by an improved ID3 algorithm considering the cluster validity index. A new cluster validity index which can compare the cluster validities of different attributes is proposed to modify the information gain. This method selects the splitting attributes with higher classification credibility and increases the diagnostic accuracy. The second highlight is to propose an FR-DT which is constructed by an improved ID3 algorithm considering the fault rates. This algorithm not only considers the partitioning ability of each attribute, but also considers the isolation priority of faults with higher fault rates. This method decreases the average diagnostic steps and promotes the diagnostic efficiency. Through a simulation case and a real board case, these decision trees are proved to be effective diagnostic tools which have higher accuracies or efficiencies in analog circuit.
doi_str_mv 10.1109/ACCESS.2019.2943380
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455642267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847300</ieee_id><doaj_id>oai_doaj_org_article_2a9eb8d16f6d4321a51446e707e8de5f</doaj_id><sourcerecordid>2455642267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9dab042b9cd4b9fb2b54e9044bb8e6582d094d96f4167679349a924b33e6ed0b3</originalsourceid><addsrcrecordid>eNpNkVtL7TAQhYsoKOov8CXgc7e5TNPkcZ96OYIieHsNSTPdZFMbT9I--O9PtVtxXmYY1reGYRXFGaMrxqi-WDfN1dPTilOmV1yDEIruFUecSV2KSsj9X_NhcZrzls6l5lVVHxXp5v6eNP2UR0xh2JR_bEZPLrENOcSBPCfETJo45OC_BOTaTv1IHu2IxA7-GyWvtg8-jB-ki4msB9vHDWlCaqcw7pDLYDdDzCGfFAed7TOe7vpx8XJ99dz8Le8ebm6b9V3ZAlVjqb11FLjTrQenO8ddBagpgHMKZaW4pxq8lh0wWctaC9BWc3BCoERPnTgubhdfH-3WvKfwZtOHiTaYr0VMG2PTGNoeDbcanfJMdtKD4MxWDEBiTWtUHqtu9jpfvN5T_DdhHs02Tml-MxsOVSWBc1nPKrGo2hRzTtj9XGXUfGZllqzMZ1Zml9VMnS1UQMQfQimoBaXiP23-j24</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455642267</pqid></control><display><type>article</type><title>GMM Clustering-Based Decision Trees Considering Fault Rate and Cluster Validity for Analog Circuit Fault Diagnosis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shi, Junyou ; He, Qingjie ; Wang, Zili</creator><creatorcontrib>Shi, Junyou ; He, Qingjie ; Wang, Zili</creatorcontrib><description>Traditional decision trees for fault diagnosis often use an ID3 construction algorithm. For promoting the accuracy and efficiency of decision trees, considering the cluster validity and fault rates, this paper proposes two improved trees, CV-DTs and FR-DTs. This paper mainly has two highlights. The first highlight is to propose a CV-DT which is constructed by an improved ID3 algorithm considering the cluster validity index. A new cluster validity index which can compare the cluster validities of different attributes is proposed to modify the information gain. This method selects the splitting attributes with higher classification credibility and increases the diagnostic accuracy. The second highlight is to propose an FR-DT which is constructed by an improved ID3 algorithm considering the fault rates. This algorithm not only considers the partitioning ability of each attribute, but also considers the isolation priority of faults with higher fault rates. This method decreases the average diagnostic steps and promotes the diagnostic efficiency. Through a simulation case and a real board case, these decision trees are proved to be effective diagnostic tools which have higher accuracies or efficiencies in analog circuit.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943380</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analog circuits ; Circuit faults ; Classification algorithms ; Cluster validity ; Clustering ; Clustering algorithms ; decision tree ; Decision trees ; Diagnostic software ; Diagnostic systems ; Fault diagnosis ; fault rate ; GMM clustering ; ID3 algorithm ; Indexes ; Partitioning algorithms ; Validity</subject><ispartof>IEEE access, 2019, Vol.7, p.140637-140650</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9dab042b9cd4b9fb2b54e9044bb8e6582d094d96f4167679349a924b33e6ed0b3</citedby><cites>FETCH-LOGICAL-c408t-9dab042b9cd4b9fb2b54e9044bb8e6582d094d96f4167679349a924b33e6ed0b3</cites><orcidid>0000-0003-4008-6622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847300$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Shi, Junyou</creatorcontrib><creatorcontrib>He, Qingjie</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><title>GMM Clustering-Based Decision Trees Considering Fault Rate and Cluster Validity for Analog Circuit Fault Diagnosis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traditional decision trees for fault diagnosis often use an ID3 construction algorithm. For promoting the accuracy and efficiency of decision trees, considering the cluster validity and fault rates, this paper proposes two improved trees, CV-DTs and FR-DTs. This paper mainly has two highlights. The first highlight is to propose a CV-DT which is constructed by an improved ID3 algorithm considering the cluster validity index. A new cluster validity index which can compare the cluster validities of different attributes is proposed to modify the information gain. This method selects the splitting attributes with higher classification credibility and increases the diagnostic accuracy. The second highlight is to propose an FR-DT which is constructed by an improved ID3 algorithm considering the fault rates. This algorithm not only considers the partitioning ability of each attribute, but also considers the isolation priority of faults with higher fault rates. This method decreases the average diagnostic steps and promotes the diagnostic efficiency. Through a simulation case and a real board case, these decision trees are proved to be effective diagnostic tools which have higher accuracies or efficiencies in analog circuit.</description><subject>Algorithms</subject><subject>Analog circuits</subject><subject>Circuit faults</subject><subject>Classification algorithms</subject><subject>Cluster validity</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>decision tree</subject><subject>Decision trees</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>fault rate</subject><subject>GMM clustering</subject><subject>ID3 algorithm</subject><subject>Indexes</subject><subject>Partitioning algorithms</subject><subject>Validity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtL7TAQhYsoKOov8CXgc7e5TNPkcZ96OYIieHsNSTPdZFMbT9I--O9PtVtxXmYY1reGYRXFGaMrxqi-WDfN1dPTilOmV1yDEIruFUecSV2KSsj9X_NhcZrzls6l5lVVHxXp5v6eNP2UR0xh2JR_bEZPLrENOcSBPCfETJo45OC_BOTaTv1IHu2IxA7-GyWvtg8-jB-ki4msB9vHDWlCaqcw7pDLYDdDzCGfFAed7TOe7vpx8XJ99dz8Le8ebm6b9V3ZAlVjqb11FLjTrQenO8ddBagpgHMKZaW4pxq8lh0wWctaC9BWc3BCoERPnTgubhdfH-3WvKfwZtOHiTaYr0VMG2PTGNoeDbcanfJMdtKD4MxWDEBiTWtUHqtu9jpfvN5T_DdhHs02Tml-MxsOVSWBc1nPKrGo2hRzTtj9XGXUfGZllqzMZ1Zml9VMnS1UQMQfQimoBaXiP23-j24</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Shi, Junyou</creator><creator>He, Qingjie</creator><creator>Wang, Zili</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4008-6622</orcidid></search><sort><creationdate>2019</creationdate><title>GMM Clustering-Based Decision Trees Considering Fault Rate and Cluster Validity for Analog Circuit Fault Diagnosis</title><author>Shi, Junyou ; He, Qingjie ; Wang, Zili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9dab042b9cd4b9fb2b54e9044bb8e6582d094d96f4167679349a924b33e6ed0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analog circuits</topic><topic>Circuit faults</topic><topic>Classification algorithms</topic><topic>Cluster validity</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>decision tree</topic><topic>Decision trees</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>fault rate</topic><topic>GMM clustering</topic><topic>ID3 algorithm</topic><topic>Indexes</topic><topic>Partitioning algorithms</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Junyou</creatorcontrib><creatorcontrib>He, Qingjie</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Junyou</au><au>He, Qingjie</au><au>Wang, Zili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GMM Clustering-Based Decision Trees Considering Fault Rate and Cluster Validity for Analog Circuit Fault Diagnosis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>140637</spage><epage>140650</epage><pages>140637-140650</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traditional decision trees for fault diagnosis often use an ID3 construction algorithm. For promoting the accuracy and efficiency of decision trees, considering the cluster validity and fault rates, this paper proposes two improved trees, CV-DTs and FR-DTs. This paper mainly has two highlights. The first highlight is to propose a CV-DT which is constructed by an improved ID3 algorithm considering the cluster validity index. A new cluster validity index which can compare the cluster validities of different attributes is proposed to modify the information gain. This method selects the splitting attributes with higher classification credibility and increases the diagnostic accuracy. The second highlight is to propose an FR-DT which is constructed by an improved ID3 algorithm considering the fault rates. This algorithm not only considers the partitioning ability of each attribute, but also considers the isolation priority of faults with higher fault rates. This method decreases the average diagnostic steps and promotes the diagnostic efficiency. Through a simulation case and a real board case, these decision trees are proved to be effective diagnostic tools which have higher accuracies or efficiencies in analog circuit.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943380</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4008-6622</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.140637-140650
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455642267
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Analog circuits
Circuit faults
Classification algorithms
Cluster validity
Clustering
Clustering algorithms
decision tree
Decision trees
Diagnostic software
Diagnostic systems
Fault diagnosis
fault rate
GMM clustering
ID3 algorithm
Indexes
Partitioning algorithms
Validity
title GMM Clustering-Based Decision Trees Considering Fault Rate and Cluster Validity for Analog Circuit Fault Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GMM%20Clustering-Based%20Decision%20Trees%20Considering%20Fault%20Rate%20and%20Cluster%20Validity%20for%20Analog%20Circuit%20Fault%20Diagnosis&rft.jtitle=IEEE%20access&rft.au=Shi,%20Junyou&rft.date=2019&rft.volume=7&rft.spage=140637&rft.epage=140650&rft.pages=140637-140650&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943380&rft_dat=%3Cproquest_cross%3E2455642267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455642267&rft_id=info:pmid/&rft_ieee_id=8847300&rft_doaj_id=oai_doaj_org_article_2a9eb8d16f6d4321a51446e707e8de5f&rfr_iscdi=true