A Deep Learning Approach for Localization Systems of High-Speed Objects
This paper addresses a novel deep learning technique for localization systems of high-speed mobile objects such as autonomous vehicles. The presented localization method consists of rough and fine localizations. The rough localization exploits the modified Kalman filtering, which produces the rough...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.96521-96530 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96530 |
---|---|
container_issue | |
container_start_page | 96521 |
container_title | IEEE access |
container_volume | 7 |
creator | Chang, Sekchin |
description | This paper addresses a novel deep learning technique for localization systems of high-speed mobile objects such as autonomous vehicles. The presented localization method consists of rough and fine localizations. The rough localization exploits the modified Kalman filtering, which produces the rough location estimates of a high-speed object. Due to an inappropriate threshold value, the rough estimates often lead to a divergence in the modified Kalman filtering. In this paper, the fine localization suppresses the divergence. The proposed fine localization is based on a deep learning technique. Using the rough estimates, the deep learning method classifies the current position of the high-speed object into an appropriate region. Based on the classified region, the rough location estimates are refined into the fine location estimates in the fine-localization step. The experimental results verify that the deep learning approach overcomes the weakness of the modified Kalman method in the localization. The results also show that the proposed method outperforms the conventional Kalman approach in the localization of high-speed objects. |
doi_str_mv | 10.1109/ACCESS.2019.2929444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455641598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8765304</ieee_id><doaj_id>oai_doaj_org_article_c6031623acbd4cf39e730a7d0ed2268f</doaj_id><sourcerecordid>2455641598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2fce086e8bb91ad08b9170bf0911c9c40d4a95675828b03331b8767b9659f3643</originalsourceid><addsrcrecordid>eNpNUU1rAjEQXUoLLa2_wEug57X53uQo1n6A4MH2HLLZia6o2Sbbg_31jV2RzuUNw3tvZnhFMSZ4QgjWT9PZbL5aTSgmekI11Zzzq-KOEqlLJpi8_tffFqOUtjiXyiNR3RWvU_QM0KEF2HhoD2s07boYrNsgHyJaBGd37Y_t23BAq2PqYZ9Q8OitXW_KVQfQoGW9Bdenh-LG212C0Rnvi8-X-cfsrVwsX99n00XpOFZ9Sb0DrCSoutbENlhlqHDtsSbE6cxpuNVCVkJRVWPGGKlVJataS6E9k5zdF--DbxPs1nSx3dt4NMG25m8Q4trY2LduB8ZJzIikzLq64c4zDRXDtmowNJRK5bPX4-CVP_76htSbbfiOh3y-oVwIyYnQKrPYwHIxpBTBX7YSbE4BmCEAcwrAnAPIqvGgagHgosi_CIY5-wUmDH71</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455641598</pqid></control><display><type>article</type><title>A Deep Learning Approach for Localization Systems of High-Speed Objects</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Sekchin</creator><creatorcontrib>Chang, Sekchin</creatorcontrib><description>This paper addresses a novel deep learning technique for localization systems of high-speed mobile objects such as autonomous vehicles. The presented localization method consists of rough and fine localizations. The rough localization exploits the modified Kalman filtering, which produces the rough location estimates of a high-speed object. Due to an inappropriate threshold value, the rough estimates often lead to a divergence in the modified Kalman filtering. In this paper, the fine localization suppresses the divergence. The proposed fine localization is based on a deep learning technique. Using the rough estimates, the deep learning method classifies the current position of the high-speed object into an appropriate region. Based on the classified region, the rough location estimates are refined into the fine location estimates in the fine-localization step. The experimental results verify that the deep learning approach overcomes the weakness of the modified Kalman method in the localization. The results also show that the proposed method outperforms the conventional Kalman approach in the localization of high-speed objects.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2929444</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous vehicles ; Deep learning ; Distortion measurement ; Estimates ; High speed ; high-speed objects ; Kalman filter ; Kalman filters ; localization ; Localization method ; Position measurement ; Receivers ; Servers</subject><ispartof>IEEE access, 2019, Vol.7, p.96521-96530</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2fce086e8bb91ad08b9170bf0911c9c40d4a95675828b03331b8767b9659f3643</citedby><cites>FETCH-LOGICAL-c408t-2fce086e8bb91ad08b9170bf0911c9c40d4a95675828b03331b8767b9659f3643</cites><orcidid>0000-0003-1546-3799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8765304$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Chang, Sekchin</creatorcontrib><title>A Deep Learning Approach for Localization Systems of High-Speed Objects</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper addresses a novel deep learning technique for localization systems of high-speed mobile objects such as autonomous vehicles. The presented localization method consists of rough and fine localizations. The rough localization exploits the modified Kalman filtering, which produces the rough location estimates of a high-speed object. Due to an inappropriate threshold value, the rough estimates often lead to a divergence in the modified Kalman filtering. In this paper, the fine localization suppresses the divergence. The proposed fine localization is based on a deep learning technique. Using the rough estimates, the deep learning method classifies the current position of the high-speed object into an appropriate region. Based on the classified region, the rough location estimates are refined into the fine location estimates in the fine-localization step. The experimental results verify that the deep learning approach overcomes the weakness of the modified Kalman method in the localization. The results also show that the proposed method outperforms the conventional Kalman approach in the localization of high-speed objects.</description><subject>Autonomous vehicles</subject><subject>Deep learning</subject><subject>Distortion measurement</subject><subject>Estimates</subject><subject>High speed</subject><subject>high-speed objects</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>localization</subject><subject>Localization method</subject><subject>Position measurement</subject><subject>Receivers</subject><subject>Servers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rAjEQXUoLLa2_wEug57X53uQo1n6A4MH2HLLZia6o2Sbbg_31jV2RzuUNw3tvZnhFMSZ4QgjWT9PZbL5aTSgmekI11Zzzq-KOEqlLJpi8_tffFqOUtjiXyiNR3RWvU_QM0KEF2HhoD2s07boYrNsgHyJaBGd37Y_t23BAq2PqYZ9Q8OitXW_KVQfQoGW9Bdenh-LG212C0Rnvi8-X-cfsrVwsX99n00XpOFZ9Sb0DrCSoutbENlhlqHDtsSbE6cxpuNVCVkJRVWPGGKlVJataS6E9k5zdF--DbxPs1nSx3dt4NMG25m8Q4trY2LduB8ZJzIikzLq64c4zDRXDtmowNJRK5bPX4-CVP_76htSbbfiOh3y-oVwIyYnQKrPYwHIxpBTBX7YSbE4BmCEAcwrAnAPIqvGgagHgosi_CIY5-wUmDH71</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chang, Sekchin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1546-3799</orcidid></search><sort><creationdate>2019</creationdate><title>A Deep Learning Approach for Localization Systems of High-Speed Objects</title><author>Chang, Sekchin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2fce086e8bb91ad08b9170bf0911c9c40d4a95675828b03331b8767b9659f3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autonomous vehicles</topic><topic>Deep learning</topic><topic>Distortion measurement</topic><topic>Estimates</topic><topic>High speed</topic><topic>high-speed objects</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>localization</topic><topic>Localization method</topic><topic>Position measurement</topic><topic>Receivers</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Sekchin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Sekchin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach for Localization Systems of High-Speed Objects</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>96521</spage><epage>96530</epage><pages>96521-96530</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper addresses a novel deep learning technique for localization systems of high-speed mobile objects such as autonomous vehicles. The presented localization method consists of rough and fine localizations. The rough localization exploits the modified Kalman filtering, which produces the rough location estimates of a high-speed object. Due to an inappropriate threshold value, the rough estimates often lead to a divergence in the modified Kalman filtering. In this paper, the fine localization suppresses the divergence. The proposed fine localization is based on a deep learning technique. Using the rough estimates, the deep learning method classifies the current position of the high-speed object into an appropriate region. Based on the classified region, the rough location estimates are refined into the fine location estimates in the fine-localization step. The experimental results verify that the deep learning approach overcomes the weakness of the modified Kalman method in the localization. The results also show that the proposed method outperforms the conventional Kalman approach in the localization of high-speed objects.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2929444</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1546-3799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.96521-96530 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455641598 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Autonomous vehicles Deep learning Distortion measurement Estimates High speed high-speed objects Kalman filter Kalman filters localization Localization method Position measurement Receivers Servers |
title | A Deep Learning Approach for Localization Systems of High-Speed Objects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Localization%20Systems%20of%20High-Speed%20Objects&rft.jtitle=IEEE%20access&rft.au=Chang,%20Sekchin&rft.date=2019&rft.volume=7&rft.spage=96521&rft.epage=96530&rft.pages=96521-96530&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2929444&rft_dat=%3Cproquest_ieee_%3E2455641598%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455641598&rft_id=info:pmid/&rft_ieee_id=8765304&rft_doaj_id=oai_doaj_org_article_c6031623acbd4cf39e730a7d0ed2268f&rfr_iscdi=true |