PuVAE: A Variational Autoencoder to Purify Adversarial Examples
Deep neural networks are widely used and exhibit excellent performance in many areas. However, they are vulnerable to adversarial attacks that compromise networks at inference time by applying elaborately designed perturbations to input data. Although several defense methods have been proposed to ad...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.126582-126593 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126593 |
---|---|
container_issue | |
container_start_page | 126582 |
container_title | IEEE access |
container_volume | 7 |
creator | Hwang, Uiwon Park, Jaewoo Jang, Hyemi Yoon, Sungroh Cho, Nam Ik |
description | Deep neural networks are widely used and exhibit excellent performance in many areas. However, they are vulnerable to adversarial attacks that compromise networks at inference time by applying elaborately designed perturbations to input data. Although several defense methods have been proposed to address specific attacks, other types of attacks can circumvent these defense mechanisms. Therefore, we propose Purifying Variational AutoEncoder (PuVAE), a method to purify adversarial examples. The proposed method eliminates an adversarial perturbation by projecting an adversarial example on the manifold of each class and determining the closest projection as a purified sample. We experimentally illustrate the robustness of PuVAE against various attack methods without any prior knowledge about the attacks. In our experiments, the proposed method exhibits performances that are competitive with state-of-the-art defense methods, and the inference time is approximately 130 times faster than that of Defense-GAN which is a state-of-the art purifier method. |
doi_str_mv | 10.1109/ACCESS.2019.2939352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455640992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8824108</ieee_id><doaj_id>oai_doaj_org_article_d51810be1a86442493757c5ed18a0e35</doaj_id><sourcerecordid>2455640992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bf6694b4d843ec584cabe538931267846790a89573df55d6a585183e649fa0873</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-gl4CnlP3O7teJISqhYKFaq_LJplIStqtu4nYf29qSnEuMwzvOx8PQlOCZ4Rg_ZBm2Xy9nlFM9IxqppmgV2hEidQxE0xe_6tv0SSELe5D9S2RjNDTqtuk88cojTbW17at3d42Udq1DvaFK8FHrYtWna-rY5SW3-DDSdZE8x-7OzQQ7tBNZZsAk3Meo4_n-Xv2Gi_fXhZZuowLnvA2zispNc95qTiDQihe2BwEU5oRKhPFZaKxVf1FrKyEKKUVShDFQHJdWawSNkaLYW7p7NYcfL2z_micrc1fw_lPY31bFw2YsncSnAOxSnJOuWaJSAoBJVEWQ49hjO6HWQfvvjoIrdm6zvd_B0O5EJJjrWmvYoOq8C4ED9VlK8HmBN4M4M0JvDmD713TwVUDwMWhFOUEK_YLTMF7fw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455640992</pqid></control><display><type>article</type><title>PuVAE: A Variational Autoencoder to Purify Adversarial Examples</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hwang, Uiwon ; Park, Jaewoo ; Jang, Hyemi ; Yoon, Sungroh ; Cho, Nam Ik</creator><creatorcontrib>Hwang, Uiwon ; Park, Jaewoo ; Jang, Hyemi ; Yoon, Sungroh ; Cho, Nam Ik</creatorcontrib><description>Deep neural networks are widely used and exhibit excellent performance in many areas. However, they are vulnerable to adversarial attacks that compromise networks at inference time by applying elaborately designed perturbations to input data. Although several defense methods have been proposed to address specific attacks, other types of attacks can circumvent these defense mechanisms. Therefore, we propose Purifying Variational AutoEncoder (PuVAE), a method to purify adversarial examples. The proposed method eliminates an adversarial perturbation by projecting an adversarial example on the manifold of each class and determining the closest projection as a purified sample. We experimentally illustrate the robustness of PuVAE against various attack methods without any prior knowledge about the attacks. In our experiments, the proposed method exhibits performances that are competitive with state-of-the-art defense methods, and the inference time is approximately 130 times faster than that of Defense-GAN which is a state-of-the art purifier method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2939352</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adversarial attack ; Artificial neural networks ; Biological neural networks ; deep learning ; Gallium nitride ; Inference ; Law enforcement ; Linear programming ; Perturbation ; Perturbation methods ; Training ; Training data ; variational autoencoder</subject><ispartof>IEEE access, 2019, Vol.7, p.126582-126593</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bf6694b4d843ec584cabe538931267846790a89573df55d6a585183e649fa0873</citedby><cites>FETCH-LOGICAL-c474t-bf6694b4d843ec584cabe538931267846790a89573df55d6a585183e649fa0873</cites><orcidid>0000-0002-2367-197X ; 0000-0001-5297-4649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8824108$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hwang, Uiwon</creatorcontrib><creatorcontrib>Park, Jaewoo</creatorcontrib><creatorcontrib>Jang, Hyemi</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><creatorcontrib>Cho, Nam Ik</creatorcontrib><title>PuVAE: A Variational Autoencoder to Purify Adversarial Examples</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep neural networks are widely used and exhibit excellent performance in many areas. However, they are vulnerable to adversarial attacks that compromise networks at inference time by applying elaborately designed perturbations to input data. Although several defense methods have been proposed to address specific attacks, other types of attacks can circumvent these defense mechanisms. Therefore, we propose Purifying Variational AutoEncoder (PuVAE), a method to purify adversarial examples. The proposed method eliminates an adversarial perturbation by projecting an adversarial example on the manifold of each class and determining the closest projection as a purified sample. We experimentally illustrate the robustness of PuVAE against various attack methods without any prior knowledge about the attacks. In our experiments, the proposed method exhibits performances that are competitive with state-of-the-art defense methods, and the inference time is approximately 130 times faster than that of Defense-GAN which is a state-of-the art purifier method.</description><subject>Adversarial attack</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>deep learning</subject><subject>Gallium nitride</subject><subject>Inference</subject><subject>Law enforcement</subject><subject>Linear programming</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Training</subject><subject>Training data</subject><subject>variational autoencoder</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-gl4CnlP3O7teJISqhYKFaq_LJplIStqtu4nYf29qSnEuMwzvOx8PQlOCZ4Rg_ZBm2Xy9nlFM9IxqppmgV2hEidQxE0xe_6tv0SSELe5D9S2RjNDTqtuk88cojTbW17at3d42Udq1DvaFK8FHrYtWna-rY5SW3-DDSdZE8x-7OzQQ7tBNZZsAk3Meo4_n-Xv2Gi_fXhZZuowLnvA2zispNc95qTiDQihe2BwEU5oRKhPFZaKxVf1FrKyEKKUVShDFQHJdWawSNkaLYW7p7NYcfL2z_micrc1fw_lPY31bFw2YsncSnAOxSnJOuWaJSAoBJVEWQ49hjO6HWQfvvjoIrdm6zvd_B0O5EJJjrWmvYoOq8C4ED9VlK8HmBN4M4M0JvDmD713TwVUDwMWhFOUEK_YLTMF7fw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Hwang, Uiwon</creator><creator>Park, Jaewoo</creator><creator>Jang, Hyemi</creator><creator>Yoon, Sungroh</creator><creator>Cho, Nam Ik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2367-197X</orcidid><orcidid>https://orcid.org/0000-0001-5297-4649</orcidid></search><sort><creationdate>2019</creationdate><title>PuVAE: A Variational Autoencoder to Purify Adversarial Examples</title><author>Hwang, Uiwon ; Park, Jaewoo ; Jang, Hyemi ; Yoon, Sungroh ; Cho, Nam Ik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bf6694b4d843ec584cabe538931267846790a89573df55d6a585183e649fa0873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adversarial attack</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>deep learning</topic><topic>Gallium nitride</topic><topic>Inference</topic><topic>Law enforcement</topic><topic>Linear programming</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Training</topic><topic>Training data</topic><topic>variational autoencoder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Uiwon</creatorcontrib><creatorcontrib>Park, Jaewoo</creatorcontrib><creatorcontrib>Jang, Hyemi</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><creatorcontrib>Cho, Nam Ik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Uiwon</au><au>Park, Jaewoo</au><au>Jang, Hyemi</au><au>Yoon, Sungroh</au><au>Cho, Nam Ik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PuVAE: A Variational Autoencoder to Purify Adversarial Examples</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>126582</spage><epage>126593</epage><pages>126582-126593</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep neural networks are widely used and exhibit excellent performance in many areas. However, they are vulnerable to adversarial attacks that compromise networks at inference time by applying elaborately designed perturbations to input data. Although several defense methods have been proposed to address specific attacks, other types of attacks can circumvent these defense mechanisms. Therefore, we propose Purifying Variational AutoEncoder (PuVAE), a method to purify adversarial examples. The proposed method eliminates an adversarial perturbation by projecting an adversarial example on the manifold of each class and determining the closest projection as a purified sample. We experimentally illustrate the robustness of PuVAE against various attack methods without any prior knowledge about the attacks. In our experiments, the proposed method exhibits performances that are competitive with state-of-the-art defense methods, and the inference time is approximately 130 times faster than that of Defense-GAN which is a state-of-the art purifier method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2939352</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2367-197X</orcidid><orcidid>https://orcid.org/0000-0001-5297-4649</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.126582-126593 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455640992 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adversarial attack Artificial neural networks Biological neural networks deep learning Gallium nitride Inference Law enforcement Linear programming Perturbation Perturbation methods Training Training data variational autoencoder |
title | PuVAE: A Variational Autoencoder to Purify Adversarial Examples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PuVAE:%20A%20Variational%20Autoencoder%20to%20Purify%20Adversarial%20Examples&rft.jtitle=IEEE%20access&rft.au=Hwang,%20Uiwon&rft.date=2019&rft.volume=7&rft.spage=126582&rft.epage=126593&rft.pages=126582-126593&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2939352&rft_dat=%3Cproquest_cross%3E2455640992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455640992&rft_id=info:pmid/&rft_ieee_id=8824108&rft_doaj_id=oai_doaj_org_article_d51810be1a86442493757c5ed18a0e35&rfr_iscdi=true |