Orthogonality Index Based Optimal Feature Selection for Visual Odometry
The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.62284-62299 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62299 |
---|---|
container_issue | |
container_start_page | 62284 |
container_title | IEEE access |
container_volume | 7 |
creator | Nguyen, Huu Hung Lee, Sukhan |
description | The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively. |
doi_str_mv | 10.1109/ACCESS.2019.2916190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455638528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8712508</ieee_id><doaj_id>oai_doaj_org_article_99964a0188df4b7c9a7d7332eab5bae3</doaj_id><sourcerecordid>2455638528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BlwXPrXlsXsdafBSEHqpew-xmolu2TU1SsP_e6Io4lxlm5vvm8VXVFSVTSom5mc3nd6vVlBFqpsxQSQ05qs4YlWbCBZfH_-LT6jKlNSmmS0qos-phGfN7eAtbGPp8qBdbh5_1LSR09XKX-w0M9T1C3kesVzhgl_uwrX2I9Wuf9qW4dGGDOR4uqhMPQ8LLX39evdzfPc8fJ0_Lh8V89jTpGqLzpG2cZl7q1ntBdCNEJzUDIRTxTHsKzneKoQLaMArGaGigk0gdUQiESMbPq8XI6wKs7S6WDePBBujtTyLENwsx992A1hgjGyBUa-ebVnUGlFOcM4RWtIC8cF2PXLsYPvaYsl2HfSyfSJaV1STXgunSxceuLoaUIvq_qZTYbwHsKID9FsD-ClBQVyOqR8Q_hFaUlbv5FzBngNY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455638528</pqid></control><display><type>article</type><title>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Huu Hung ; Lee, Sukhan</creator><creatorcontrib>Nguyen, Huu Hung ; Lee, Sukhan</creatorcontrib><description>The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2916190</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Buckets ; Cameras ; ego-motion estimation ; Feature extraction ; Feature selection ; Indexes ; Mathematical analysis ; Matrix methods ; Noise levels ; Optimization ; Orthogonality ; orthogonality index ; Performance enhancement ; Pose estimation ; Spatial distribution ; Three-dimensional displays ; Visual odometry</subject><ispartof>IEEE access, 2019, Vol.7, p.62284-62299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</citedby><cites>FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</cites><orcidid>0000-0002-7098-1102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8712508$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Huu Hung</creatorcontrib><creatorcontrib>Lee, Sukhan</creatorcontrib><title>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</title><title>IEEE access</title><addtitle>Access</addtitle><description>The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively.</description><subject>Accuracy</subject><subject>Buckets</subject><subject>Cameras</subject><subject>ego-motion estimation</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Indexes</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>Orthogonality</subject><subject>orthogonality index</subject><subject>Performance enhancement</subject><subject>Pose estimation</subject><subject>Spatial distribution</subject><subject>Three-dimensional displays</subject><subject>Visual odometry</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BlwXPrXlsXsdafBSEHqpew-xmolu2TU1SsP_e6Io4lxlm5vvm8VXVFSVTSom5mc3nd6vVlBFqpsxQSQ05qs4YlWbCBZfH_-LT6jKlNSmmS0qos-phGfN7eAtbGPp8qBdbh5_1LSR09XKX-w0M9T1C3kesVzhgl_uwrX2I9Wuf9qW4dGGDOR4uqhMPQ8LLX39evdzfPc8fJ0_Lh8V89jTpGqLzpG2cZl7q1ntBdCNEJzUDIRTxTHsKzneKoQLaMArGaGigk0gdUQiESMbPq8XI6wKs7S6WDePBBujtTyLENwsx992A1hgjGyBUa-ebVnUGlFOcM4RWtIC8cF2PXLsYPvaYsl2HfSyfSJaV1STXgunSxceuLoaUIvq_qZTYbwHsKID9FsD-ClBQVyOqR8Q_hFaUlbv5FzBngNY</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nguyen, Huu Hung</creator><creator>Lee, Sukhan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7098-1102</orcidid></search><sort><creationdate>2019</creationdate><title>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</title><author>Nguyen, Huu Hung ; Lee, Sukhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Buckets</topic><topic>Cameras</topic><topic>ego-motion estimation</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Indexes</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>Orthogonality</topic><topic>orthogonality index</topic><topic>Performance enhancement</topic><topic>Pose estimation</topic><topic>Spatial distribution</topic><topic>Three-dimensional displays</topic><topic>Visual odometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Huu Hung</creatorcontrib><creatorcontrib>Lee, Sukhan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Huu Hung</au><au>Lee, Sukhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>62284</spage><epage>62299</epage><pages>62284-62299</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2916190</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7098-1102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.62284-62299 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455638528 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Buckets Cameras ego-motion estimation Feature extraction Feature selection Indexes Mathematical analysis Matrix methods Noise levels Optimization Orthogonality orthogonality index Performance enhancement Pose estimation Spatial distribution Three-dimensional displays Visual odometry |
title | Orthogonality Index Based Optimal Feature Selection for Visual Odometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonality%20Index%20Based%20Optimal%20Feature%20Selection%20for%20Visual%20Odometry&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Huu%20Hung&rft.date=2019&rft.volume=7&rft.spage=62284&rft.epage=62299&rft.pages=62284-62299&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2916190&rft_dat=%3Cproquest_cross%3E2455638528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455638528&rft_id=info:pmid/&rft_ieee_id=8712508&rft_doaj_id=oai_doaj_org_article_99964a0188df4b7c9a7d7332eab5bae3&rfr_iscdi=true |