Orthogonality Index Based Optimal Feature Selection for Visual Odometry

The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.62284-62299
Hauptverfasser: Nguyen, Huu Hung, Lee, Sukhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62299
container_issue
container_start_page 62284
container_title IEEE access
container_volume 7
creator Nguyen, Huu Hung
Lee, Sukhan
description The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively.
doi_str_mv 10.1109/ACCESS.2019.2916190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455638528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8712508</ieee_id><doaj_id>oai_doaj_org_article_99964a0188df4b7c9a7d7332eab5bae3</doaj_id><sourcerecordid>2455638528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BlwXPrXlsXsdafBSEHqpew-xmolu2TU1SsP_e6Io4lxlm5vvm8VXVFSVTSom5mc3nd6vVlBFqpsxQSQ05qs4YlWbCBZfH_-LT6jKlNSmmS0qos-phGfN7eAtbGPp8qBdbh5_1LSR09XKX-w0M9T1C3kesVzhgl_uwrX2I9Wuf9qW4dGGDOR4uqhMPQ8LLX39evdzfPc8fJ0_Lh8V89jTpGqLzpG2cZl7q1ntBdCNEJzUDIRTxTHsKzneKoQLaMArGaGigk0gdUQiESMbPq8XI6wKs7S6WDePBBujtTyLENwsx992A1hgjGyBUa-ebVnUGlFOcM4RWtIC8cF2PXLsYPvaYsl2HfSyfSJaV1STXgunSxceuLoaUIvq_qZTYbwHsKID9FsD-ClBQVyOqR8Q_hFaUlbv5FzBngNY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455638528</pqid></control><display><type>article</type><title>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Huu Hung ; Lee, Sukhan</creator><creatorcontrib>Nguyen, Huu Hung ; Lee, Sukhan</creatorcontrib><description>The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2916190</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Buckets ; Cameras ; ego-motion estimation ; Feature extraction ; Feature selection ; Indexes ; Mathematical analysis ; Matrix methods ; Noise levels ; Optimization ; Orthogonality ; orthogonality index ; Performance enhancement ; Pose estimation ; Spatial distribution ; Three-dimensional displays ; Visual odometry</subject><ispartof>IEEE access, 2019, Vol.7, p.62284-62299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</citedby><cites>FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</cites><orcidid>0000-0002-7098-1102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8712508$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Huu Hung</creatorcontrib><creatorcontrib>Lee, Sukhan</creatorcontrib><title>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</title><title>IEEE access</title><addtitle>Access</addtitle><description>The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively.</description><subject>Accuracy</subject><subject>Buckets</subject><subject>Cameras</subject><subject>ego-motion estimation</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Indexes</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>Orthogonality</subject><subject>orthogonality index</subject><subject>Performance enhancement</subject><subject>Pose estimation</subject><subject>Spatial distribution</subject><subject>Three-dimensional displays</subject><subject>Visual odometry</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BlwXPrXlsXsdafBSEHqpew-xmolu2TU1SsP_e6Io4lxlm5vvm8VXVFSVTSom5mc3nd6vVlBFqpsxQSQ05qs4YlWbCBZfH_-LT6jKlNSmmS0qos-phGfN7eAtbGPp8qBdbh5_1LSR09XKX-w0M9T1C3kesVzhgl_uwrX2I9Wuf9qW4dGGDOR4uqhMPQ8LLX39evdzfPc8fJ0_Lh8V89jTpGqLzpG2cZl7q1ntBdCNEJzUDIRTxTHsKzneKoQLaMArGaGigk0gdUQiESMbPq8XI6wKs7S6WDePBBujtTyLENwsx992A1hgjGyBUa-ebVnUGlFOcM4RWtIC8cF2PXLsYPvaYsl2HfSyfSJaV1STXgunSxceuLoaUIvq_qZTYbwHsKID9FsD-ClBQVyOqR8Q_hFaUlbv5FzBngNY</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nguyen, Huu Hung</creator><creator>Lee, Sukhan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7098-1102</orcidid></search><sort><creationdate>2019</creationdate><title>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</title><author>Nguyen, Huu Hung ; Lee, Sukhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b4d82f68bff508455c682a5570f28f1adfc72e7a1421a998a4ac6e1d07ea00623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Buckets</topic><topic>Cameras</topic><topic>ego-motion estimation</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Indexes</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>Orthogonality</topic><topic>orthogonality index</topic><topic>Performance enhancement</topic><topic>Pose estimation</topic><topic>Spatial distribution</topic><topic>Three-dimensional displays</topic><topic>Visual odometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Huu Hung</creatorcontrib><creatorcontrib>Lee, Sukhan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Huu Hung</au><au>Lee, Sukhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonality Index Based Optimal Feature Selection for Visual Odometry</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>62284</spage><epage>62299</epage><pages>62284-62299</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The performance of visual odometry is dependent upon the quality of features selected for computing the frame-to-frame transformation. In order to ensure the quality of selected features, conventional approaches consider the spatial distribution of the selected features, in addition to their counts and matching scores, in which a small number of features are selected randomly from each of the uniformly distributed buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry by maximizing the orthogonality index of individual equations and constraints associated with computation. We found that, at a constant noise level, the mean of the residual error and the variance of an estimated essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index. The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality index compared with the conventional random selection. For instance, it enhances accuracy by as much as 35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2916190</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7098-1102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.62284-62299
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455638528
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Buckets
Cameras
ego-motion estimation
Feature extraction
Feature selection
Indexes
Mathematical analysis
Matrix methods
Noise levels
Optimization
Orthogonality
orthogonality index
Performance enhancement
Pose estimation
Spatial distribution
Three-dimensional displays
Visual odometry
title Orthogonality Index Based Optimal Feature Selection for Visual Odometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonality%20Index%20Based%20Optimal%20Feature%20Selection%20for%20Visual%20Odometry&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Huu%20Hung&rft.date=2019&rft.volume=7&rft.spage=62284&rft.epage=62299&rft.pages=62284-62299&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2916190&rft_dat=%3Cproquest_cross%3E2455638528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455638528&rft_id=info:pmid/&rft_ieee_id=8712508&rft_doaj_id=oai_doaj_org_article_99964a0188df4b7c9a7d7332eab5bae3&rfr_iscdi=true