Deep Covariance Estimation Hashing
Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserv...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.113223-113234 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113234 |
---|---|
container_issue | |
container_start_page | 113223 |
container_title | IEEE access |
container_volume | 7 |
creator | Wu, Yue Sun, Qiule Hou, Yaqing Zhang, Jianxin Zhang, Qiang Wei, Xiaopeng |
description | Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance. |
doi_str_mv | 10.1109/ACCESS.2019.2934321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455636805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793170</ieee_id><doaj_id>oai_doaj_org_article_f1a50e2b1ce24a4485d12ce6af3df363</doaj_id><sourcerecordid>2455636805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</originalsourceid><addsrcrecordid>eNpNUMFOAjEQbYwmEuQLuBA9g512u9seyYpCQuIBPTfd7hSX4BbbxcS_t7iEOJeZvJn35uURMgY6A6DqcV6Wi81mxiioGVM84wyuyIBBrqZc8Pz633xLRjHuaCqZIFEMyP0T4mFS-m8TGtNanCxi13yarvHtZGniR9Nu78iNM_uIo3MfkvfnxVu5nK5fX1blfD21GZXdFGxmVWUlMuqqOpegcgvCOqDoDNCq5gWvpENISzBKFSgsVUYwyQRaSvmQrHrd2pudPoRkI_xobxr9B_iw1SZ0jd2jdmAERVaBRZaZLJOiBmYxN47Xjuc8aT30Wofgv44YO73zx9Am-5plQuQ8l1SkK95f2eBjDOguX4HqU7a6z1afstXnbBNr3LMaRLwwZKE4FJT_AlFuc1k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455636805</pqid></control><display><type>article</type><title>Deep Covariance Estimation Hashing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Yue ; Sun, Qiule ; Hou, Yaqing ; Zhang, Jianxin ; Zhang, Qiang ; Wei, Xiaopeng</creator><creatorcontrib>Wu, Yue ; Sun, Qiule ; Hou, Yaqing ; Zhang, Jianxin ; Zhang, Qiang ; Wei, Xiaopeng</creatorcontrib><description>Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2934321</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Binary codes ; Convolutional codes ; Covariance ; covariance estimation ; Covariance matrices ; Deep hashing ; Eigenvalues ; Estimation ; Hash functions ; Image management ; Image retrieval ; pairwise interactions ; Representations ; Robustness ; Semantics</subject><ispartof>IEEE access, 2019, Vol.7, p.113223-113234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</citedby><cites>FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</cites><orcidid>0000-0001-6076-5433 ; 0000-0003-3776-9799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Sun, Qiule</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Wei, Xiaopeng</creatorcontrib><title>Deep Covariance Estimation Hashing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance.</description><subject>Artificial neural networks</subject><subject>Binary codes</subject><subject>Convolutional codes</subject><subject>Covariance</subject><subject>covariance estimation</subject><subject>Covariance matrices</subject><subject>Deep hashing</subject><subject>Eigenvalues</subject><subject>Estimation</subject><subject>Hash functions</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>pairwise interactions</subject><subject>Representations</subject><subject>Robustness</subject><subject>Semantics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFOAjEQbYwmEuQLuBA9g512u9seyYpCQuIBPTfd7hSX4BbbxcS_t7iEOJeZvJn35uURMgY6A6DqcV6Wi81mxiioGVM84wyuyIBBrqZc8Pz633xLRjHuaCqZIFEMyP0T4mFS-m8TGtNanCxi13yarvHtZGniR9Nu78iNM_uIo3MfkvfnxVu5nK5fX1blfD21GZXdFGxmVWUlMuqqOpegcgvCOqDoDNCq5gWvpENISzBKFSgsVUYwyQRaSvmQrHrd2pudPoRkI_xobxr9B_iw1SZ0jd2jdmAERVaBRZaZLJOiBmYxN47Xjuc8aT30Wofgv44YO73zx9Am-5plQuQ8l1SkK95f2eBjDOguX4HqU7a6z1afstXnbBNr3LMaRLwwZKE4FJT_AlFuc1k</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Yue</creator><creator>Sun, Qiule</creator><creator>Hou, Yaqing</creator><creator>Zhang, Jianxin</creator><creator>Zhang, Qiang</creator><creator>Wei, Xiaopeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6076-5433</orcidid><orcidid>https://orcid.org/0000-0003-3776-9799</orcidid></search><sort><creationdate>2019</creationdate><title>Deep Covariance Estimation Hashing</title><author>Wu, Yue ; Sun, Qiule ; Hou, Yaqing ; Zhang, Jianxin ; Zhang, Qiang ; Wei, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Binary codes</topic><topic>Convolutional codes</topic><topic>Covariance</topic><topic>covariance estimation</topic><topic>Covariance matrices</topic><topic>Deep hashing</topic><topic>Eigenvalues</topic><topic>Estimation</topic><topic>Hash functions</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>pairwise interactions</topic><topic>Representations</topic><topic>Robustness</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Sun, Qiule</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Wei, Xiaopeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yue</au><au>Sun, Qiule</au><au>Hou, Yaqing</au><au>Zhang, Jianxin</au><au>Zhang, Qiang</au><au>Wei, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Covariance Estimation Hashing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>113223</spage><epage>113234</epage><pages>113223-113234</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2934321</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6076-5433</orcidid><orcidid>https://orcid.org/0000-0003-3776-9799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.113223-113234 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455636805 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Binary codes Convolutional codes Covariance covariance estimation Covariance matrices Deep hashing Eigenvalues Estimation Hash functions Image management Image retrieval pairwise interactions Representations Robustness Semantics |
title | Deep Covariance Estimation Hashing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Covariance%20Estimation%20Hashing&rft.jtitle=IEEE%20access&rft.au=Wu,%20Yue&rft.date=2019&rft.volume=7&rft.spage=113223&rft.epage=113234&rft.pages=113223-113234&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2934321&rft_dat=%3Cproquest_cross%3E2455636805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455636805&rft_id=info:pmid/&rft_ieee_id=8793170&rft_doaj_id=oai_doaj_org_article_f1a50e2b1ce24a4485d12ce6af3df363&rfr_iscdi=true |