Deep Covariance Estimation Hashing

Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.113223-113234
Hauptverfasser: Wu, Yue, Sun, Qiule, Hou, Yaqing, Zhang, Jianxin, Zhang, Qiang, Wei, Xiaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113234
container_issue
container_start_page 113223
container_title IEEE access
container_volume 7
creator Wu, Yue
Sun, Qiule
Hou, Yaqing
Zhang, Jianxin
Zhang, Qiang
Wei, Xiaopeng
description Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance.
doi_str_mv 10.1109/ACCESS.2019.2934321
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455636805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793170</ieee_id><doaj_id>oai_doaj_org_article_f1a50e2b1ce24a4485d12ce6af3df363</doaj_id><sourcerecordid>2455636805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</originalsourceid><addsrcrecordid>eNpNUMFOAjEQbYwmEuQLuBA9g512u9seyYpCQuIBPTfd7hSX4BbbxcS_t7iEOJeZvJn35uURMgY6A6DqcV6Wi81mxiioGVM84wyuyIBBrqZc8Pz633xLRjHuaCqZIFEMyP0T4mFS-m8TGtNanCxi13yarvHtZGniR9Nu78iNM_uIo3MfkvfnxVu5nK5fX1blfD21GZXdFGxmVWUlMuqqOpegcgvCOqDoDNCq5gWvpENISzBKFSgsVUYwyQRaSvmQrHrd2pudPoRkI_xobxr9B_iw1SZ0jd2jdmAERVaBRZaZLJOiBmYxN47Xjuc8aT30Wofgv44YO73zx9Am-5plQuQ8l1SkK95f2eBjDOguX4HqU7a6z1afstXnbBNr3LMaRLwwZKE4FJT_AlFuc1k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455636805</pqid></control><display><type>article</type><title>Deep Covariance Estimation Hashing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Yue ; Sun, Qiule ; Hou, Yaqing ; Zhang, Jianxin ; Zhang, Qiang ; Wei, Xiaopeng</creator><creatorcontrib>Wu, Yue ; Sun, Qiule ; Hou, Yaqing ; Zhang, Jianxin ; Zhang, Qiang ; Wei, Xiaopeng</creatorcontrib><description>Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2934321</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Binary codes ; Convolutional codes ; Covariance ; covariance estimation ; Covariance matrices ; Deep hashing ; Eigenvalues ; Estimation ; Hash functions ; Image management ; Image retrieval ; pairwise interactions ; Representations ; Robustness ; Semantics</subject><ispartof>IEEE access, 2019, Vol.7, p.113223-113234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</citedby><cites>FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</cites><orcidid>0000-0001-6076-5433 ; 0000-0003-3776-9799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Sun, Qiule</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Wei, Xiaopeng</creatorcontrib><title>Deep Covariance Estimation Hashing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance.</description><subject>Artificial neural networks</subject><subject>Binary codes</subject><subject>Convolutional codes</subject><subject>Covariance</subject><subject>covariance estimation</subject><subject>Covariance matrices</subject><subject>Deep hashing</subject><subject>Eigenvalues</subject><subject>Estimation</subject><subject>Hash functions</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>pairwise interactions</subject><subject>Representations</subject><subject>Robustness</subject><subject>Semantics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFOAjEQbYwmEuQLuBA9g512u9seyYpCQuIBPTfd7hSX4BbbxcS_t7iEOJeZvJn35uURMgY6A6DqcV6Wi81mxiioGVM84wyuyIBBrqZc8Pz633xLRjHuaCqZIFEMyP0T4mFS-m8TGtNanCxi13yarvHtZGniR9Nu78iNM_uIo3MfkvfnxVu5nK5fX1blfD21GZXdFGxmVWUlMuqqOpegcgvCOqDoDNCq5gWvpENISzBKFSgsVUYwyQRaSvmQrHrd2pudPoRkI_xobxr9B_iw1SZ0jd2jdmAERVaBRZaZLJOiBmYxN47Xjuc8aT30Wofgv44YO73zx9Am-5plQuQ8l1SkK95f2eBjDOguX4HqU7a6z1afstXnbBNr3LMaRLwwZKE4FJT_AlFuc1k</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Yue</creator><creator>Sun, Qiule</creator><creator>Hou, Yaqing</creator><creator>Zhang, Jianxin</creator><creator>Zhang, Qiang</creator><creator>Wei, Xiaopeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6076-5433</orcidid><orcidid>https://orcid.org/0000-0003-3776-9799</orcidid></search><sort><creationdate>2019</creationdate><title>Deep Covariance Estimation Hashing</title><author>Wu, Yue ; Sun, Qiule ; Hou, Yaqing ; Zhang, Jianxin ; Zhang, Qiang ; Wei, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1c4c9bc8e20fbd68196c15cf10efa10bd373b8fe1bd61a997e5c09a52825ec003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Binary codes</topic><topic>Convolutional codes</topic><topic>Covariance</topic><topic>covariance estimation</topic><topic>Covariance matrices</topic><topic>Deep hashing</topic><topic>Eigenvalues</topic><topic>Estimation</topic><topic>Hash functions</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>pairwise interactions</topic><topic>Representations</topic><topic>Robustness</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Sun, Qiule</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Zhang, Jianxin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Wei, Xiaopeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yue</au><au>Sun, Qiule</au><au>Hou, Yaqing</au><au>Zhang, Jianxin</au><au>Zhang, Qiang</au><au>Wei, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Covariance Estimation Hashing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>113223</spage><epage>113234</epage><pages>113223-113234</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep hashing, the combination of advanced convolutional neural networks and efficient hashing, has recently achieved impressive performance for image retrieval. However, state-of-the-art deep hashing methods mainly focus on constructing hash function, loss function and training strategies to preserve semantic similarity. For the fundamental image characteristics, they depend heavily on the first-order convolutional feature statistics, failing to take their global structure into consideration. To address this problem, we present a deep covariance estimation hashing (DCEH) method with robust covariance form to improve hash code quality. The core of DCEH involves covariance pooling as deep hashing representation, performing global pairwise feature interactions. The covariance pooling can capture richer statistic information of deep convolutional features and produce more informative global representations.Due to convolutional features are usually high dimension and small sample size, we estimate robust covariance by shrinking its eigenvalues using power normalization, forming an independent structural layer. Then the structural layer is embedded into deep hashing paradigm in an end-to-end learning manner. Extensive experiments on three benchmarks show that the proposed DCEH outperforms its counterparts and achieves superior performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2934321</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6076-5433</orcidid><orcidid>https://orcid.org/0000-0003-3776-9799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.113223-113234
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455636805
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Binary codes
Convolutional codes
Covariance
covariance estimation
Covariance matrices
Deep hashing
Eigenvalues
Estimation
Hash functions
Image management
Image retrieval
pairwise interactions
Representations
Robustness
Semantics
title Deep Covariance Estimation Hashing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Covariance%20Estimation%20Hashing&rft.jtitle=IEEE%20access&rft.au=Wu,%20Yue&rft.date=2019&rft.volume=7&rft.spage=113223&rft.epage=113234&rft.pages=113223-113234&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2934321&rft_dat=%3Cproquest_cross%3E2455636805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455636805&rft_id=info:pmid/&rft_ieee_id=8793170&rft_doaj_id=oai_doaj_org_article_f1a50e2b1ce24a4485d12ce6af3df363&rfr_iscdi=true