Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network
Micro-expression recognition (MER) has attracted much attention with various practical applications, particularly in clinical diagnosis and interrogations. In this paper, we propose a three-stream convolutional neural network (TSCNN) to recognize MEs by learning ME-discriminative features in three k...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.184537-184551 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184551 |
---|---|
container_issue | |
container_start_page | 184537 |
container_title | IEEE access |
container_volume | 7 |
creator | Song, Baolin Li, Ke Zong, Yuan Zhu, Jie Zheng, Wenming Shi, Jingang Zhao, Li |
description | Micro-expression recognition (MER) has attracted much attention with various practical applications, particularly in clinical diagnosis and interrogations. In this paper, we propose a three-stream convolutional neural network (TSCNN) to recognize MEs by learning ME-discriminative features in three key frames of ME videos. We design a dynamic-temporal stream, static-spatial stream, and local-spatial stream module for the TSCNN that respectively attempt to learn and integrate temporal, entire facial region, and facial local region cues in ME videos with the goal of recognizing MEs. In addition, to allow the TSCNN to recognize MEs without using the index values of apex frames, we design a reliable apex frame detection algorithm. Extensive experiments are conducted with five public ME databases: CASME II, SMIC-HS, SAMM, CAS(ME) 2 , and CASME. Our proposed TSCNN is shown to achieve more promising recognition results when compared with many other methods. |
doi_str_mv | 10.1109/ACCESS.2019.2960629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455636522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8936434</ieee_id><doaj_id>oai_doaj_org_article_5cced9e35d7c40b58b396c1fa3ca44f6</doaj_id><sourcerecordid>2455636522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-36c17128f569f0fea3213566a5cf78ff4924396db5f0f0e24a130bd52a8547373</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIIOgX9BKJc4r3xEcUlUVikSi9cLEcZ1xSQlzshO3rcRuEmMuMZt57o5mXJFOMZhgjeXZelvPFYkYQljMiBRJE7iVHBAuZUU7F_r_6MJmEsEYxitji-VHy9ADGrbrmu-lW6WLjul534IaQ3jbGu2z-ufEQQuO6dBm2EJ0-PnuAbNF70K9p6bp31w59BOg2vYPB71L_4fzLSXJgdRtg8puPk-XF_LG8ym7uL6_L85vMMFT0GRUG55gUlgtpkQVNCaZcCM2NzQtrmSSMSlFXPE4REKYxRVXNiS44y2lOj5PrUbd2eq02vnnV_ks53ahdw_mV0r5vTAuKGwO1BMrrPC6veFFFZYOtpkYzZkXUOh21Nt69DRB6tXaDj7cFRRjnggpOSETRERVfFIIH-7cVI7X1RI2eqK0n6teTyJqOrAYA_hiFpIJRRn8AJoKIHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455636522</pqid></control><display><type>article</type><title>Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Song, Baolin ; Li, Ke ; Zong, Yuan ; Zhu, Jie ; Zheng, Wenming ; Shi, Jingang ; Zhao, Li</creator><creatorcontrib>Song, Baolin ; Li, Ke ; Zong, Yuan ; Zhu, Jie ; Zheng, Wenming ; Shi, Jingang ; Zhao, Li</creatorcontrib><description>Micro-expression recognition (MER) has attracted much attention with various practical applications, particularly in clinical diagnosis and interrogations. In this paper, we propose a three-stream convolutional neural network (TSCNN) to recognize MEs by learning ME-discriminative features in three key frames of ME videos. We design a dynamic-temporal stream, static-spatial stream, and local-spatial stream module for the TSCNN that respectively attempt to learn and integrate temporal, entire facial region, and facial local region cues in ME videos with the goal of recognizing MEs. In addition, to allow the TSCNN to recognize MEs without using the index values of apex frames, we design a reliable apex frame detection algorithm. Extensive experiments are conducted with five public ME databases: CASME II, SMIC-HS, SAMM, CAS(ME) 2 , and CASME. Our proposed TSCNN is shown to achieve more promising recognition results when compared with many other methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2960629</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; apex frame location ; Apexes ; Artificial neural networks ; convolutional neural networks ; Data mining ; Face recognition ; Feature extraction ; Frame design ; Frames (data processing) ; Micro-expression recognition ; Neural networks ; Recognition ; spatiotemporal information ; Spatiotemporal phenomena ; Task analysis ; Video ; Videos</subject><ispartof>IEEE access, 2019, Vol.7, p.184537-184551</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-36c17128f569f0fea3213566a5cf78ff4924396db5f0f0e24a130bd52a8547373</citedby><cites>FETCH-LOGICAL-c408t-36c17128f569f0fea3213566a5cf78ff4924396db5f0f0e24a130bd52a8547373</cites><orcidid>0000-0002-7764-5179 ; 0000-0002-4424-8505 ; 0000-0002-9874-0167 ; 0000-0003-2133-4651 ; 0000-0001-7070-6365 ; 0000-0002-0839-8792 ; 0000-0002-7145-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8936434$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Song, Baolin</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Zong, Yuan</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Zheng, Wenming</creatorcontrib><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><title>Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Micro-expression recognition (MER) has attracted much attention with various practical applications, particularly in clinical diagnosis and interrogations. In this paper, we propose a three-stream convolutional neural network (TSCNN) to recognize MEs by learning ME-discriminative features in three key frames of ME videos. We design a dynamic-temporal stream, static-spatial stream, and local-spatial stream module for the TSCNN that respectively attempt to learn and integrate temporal, entire facial region, and facial local region cues in ME videos with the goal of recognizing MEs. In addition, to allow the TSCNN to recognize MEs without using the index values of apex frames, we design a reliable apex frame detection algorithm. Extensive experiments are conducted with five public ME databases: CASME II, SMIC-HS, SAMM, CAS(ME) 2 , and CASME. Our proposed TSCNN is shown to achieve more promising recognition results when compared with many other methods.</description><subject>Algorithms</subject><subject>apex frame location</subject><subject>Apexes</subject><subject>Artificial neural networks</subject><subject>convolutional neural networks</subject><subject>Data mining</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Frame design</subject><subject>Frames (data processing)</subject><subject>Micro-expression recognition</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>spatiotemporal information</subject><subject>Spatiotemporal phenomena</subject><subject>Task analysis</subject><subject>Video</subject><subject>Videos</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQjRBIIOgX9BKJc4r3xEcUlUVikSi9cLEcZ1xSQlzshO3rcRuEmMuMZt57o5mXJFOMZhgjeXZelvPFYkYQljMiBRJE7iVHBAuZUU7F_r_6MJmEsEYxitji-VHy9ADGrbrmu-lW6WLjul534IaQ3jbGu2z-ufEQQuO6dBm2EJ0-PnuAbNF70K9p6bp31w59BOg2vYPB71L_4fzLSXJgdRtg8puPk-XF_LG8ym7uL6_L85vMMFT0GRUG55gUlgtpkQVNCaZcCM2NzQtrmSSMSlFXPE4REKYxRVXNiS44y2lOj5PrUbd2eq02vnnV_ks53ahdw_mV0r5vTAuKGwO1BMrrPC6veFFFZYOtpkYzZkXUOh21Nt69DRB6tXaDj7cFRRjnggpOSETRERVfFIIH-7cVI7X1RI2eqK0n6teTyJqOrAYA_hiFpIJRRn8AJoKIHw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Song, Baolin</creator><creator>Li, Ke</creator><creator>Zong, Yuan</creator><creator>Zhu, Jie</creator><creator>Zheng, Wenming</creator><creator>Shi, Jingang</creator><creator>Zhao, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7764-5179</orcidid><orcidid>https://orcid.org/0000-0002-4424-8505</orcidid><orcidid>https://orcid.org/0000-0002-9874-0167</orcidid><orcidid>https://orcid.org/0000-0003-2133-4651</orcidid><orcidid>https://orcid.org/0000-0001-7070-6365</orcidid><orcidid>https://orcid.org/0000-0002-0839-8792</orcidid><orcidid>https://orcid.org/0000-0002-7145-4718</orcidid></search><sort><creationdate>2019</creationdate><title>Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network</title><author>Song, Baolin ; Li, Ke ; Zong, Yuan ; Zhu, Jie ; Zheng, Wenming ; Shi, Jingang ; Zhao, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-36c17128f569f0fea3213566a5cf78ff4924396db5f0f0e24a130bd52a8547373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>apex frame location</topic><topic>Apexes</topic><topic>Artificial neural networks</topic><topic>convolutional neural networks</topic><topic>Data mining</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Frame design</topic><topic>Frames (data processing)</topic><topic>Micro-expression recognition</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>spatiotemporal information</topic><topic>Spatiotemporal phenomena</topic><topic>Task analysis</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Baolin</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Zong, Yuan</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Zheng, Wenming</creatorcontrib><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Baolin</au><au>Li, Ke</au><au>Zong, Yuan</au><au>Zhu, Jie</au><au>Zheng, Wenming</au><au>Shi, Jingang</au><au>Zhao, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>184537</spage><epage>184551</epage><pages>184537-184551</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Micro-expression recognition (MER) has attracted much attention with various practical applications, particularly in clinical diagnosis and interrogations. In this paper, we propose a three-stream convolutional neural network (TSCNN) to recognize MEs by learning ME-discriminative features in three key frames of ME videos. We design a dynamic-temporal stream, static-spatial stream, and local-spatial stream module for the TSCNN that respectively attempt to learn and integrate temporal, entire facial region, and facial local region cues in ME videos with the goal of recognizing MEs. In addition, to allow the TSCNN to recognize MEs without using the index values of apex frames, we design a reliable apex frame detection algorithm. Extensive experiments are conducted with five public ME databases: CASME II, SMIC-HS, SAMM, CAS(ME) 2 , and CASME. Our proposed TSCNN is shown to achieve more promising recognition results when compared with many other methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2960629</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7764-5179</orcidid><orcidid>https://orcid.org/0000-0002-4424-8505</orcidid><orcidid>https://orcid.org/0000-0002-9874-0167</orcidid><orcidid>https://orcid.org/0000-0003-2133-4651</orcidid><orcidid>https://orcid.org/0000-0001-7070-6365</orcidid><orcidid>https://orcid.org/0000-0002-0839-8792</orcidid><orcidid>https://orcid.org/0000-0002-7145-4718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.184537-184551 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455636522 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms apex frame location Apexes Artificial neural networks convolutional neural networks Data mining Face recognition Feature extraction Frame design Frames (data processing) Micro-expression recognition Neural networks Recognition spatiotemporal information Spatiotemporal phenomena Task analysis Video Videos |
title | Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognizing%20Spontaneous%20Micro-Expression%20Using%20a%20Three-Stream%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Song,%20Baolin&rft.date=2019&rft.volume=7&rft.spage=184537&rft.epage=184551&rft.pages=184537-184551&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2960629&rft_dat=%3Cproquest_cross%3E2455636522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455636522&rft_id=info:pmid/&rft_ieee_id=8936434&rft_doaj_id=oai_doaj_org_article_5cced9e35d7c40b58b396c1fa3ca44f6&rfr_iscdi=true |