360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets

Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.180503-180511
Hauptverfasser: Zhu, Dandan, Zhou, Qiangqiang, Han, Tian, Chen, Yongqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180511
container_issue
container_start_page 180503
container_title IEEE access
container_volume 7
creator Zhu, Dandan
Zhou, Qiangqiang
Han, Tian
Chen, Yongqing
description Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data.
doi_str_mv 10.1109/ACCESS.2019.2958111
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455633449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926406</ieee_id><doaj_id>oai_doaj_org_article_72aa79941a004ae1ab396600b01dbcf9</doaj_id><sourcerecordid>2455633449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIINgv2CUS5458NzmOwmDSJBADrpHXeqPT1kBSQPv3ZBRN-GL7ye_Z1suyIaMjxqi9Gpfl7Xw-4pTZEbfKMMaOsjPOtM2FEvr4X32aDWJc0xQmQao4y56EpuQGVwGRPELrA2yBzHdt94axiWQS_JbM8eMT266BDXlt8DuSa4hYE9-S6fY9-K9UT8r8BtuILXbxIjtZwibi4C-fZy-T2-fyPp893E3L8SyvJDVdDoLXNXDUha11hUwqNLoATK3QVvAF52ClSVitJBqDtSmWyCpptVHUKHGeTXvd2sPavYdmC2HnPDTuF_Bh5SB0TbVBV3CAwlrJgFIJyGAhrNaULiirF9XSJq3LXiv9k56NnVv7z9Cm8x2XSmkhpNxPiX6qCj7GgMvDVkbd3gvXe-H2Xrg_LxJr2LMaRDwwjOVaUi1-AGEdgtI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633449</pqid></control><display><type>article</type><title>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Dandan ; Zhou, Qiangqiang ; Han, Tian ; Chen, Yongqing</creator><creatorcontrib>Zhu, Dandan ; Zhou, Qiangqiang ; Han, Tian ; Chen, Yongqing</creatorcontrib><description>Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2958111</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; correlation layer ; Data models ; Deep learning ; generative model ; Generators ; Head ; Hidden Markov models ; Machine learning ; Magnetic heads ; panorama ; Prediction models ; saliency prediction ; Synthesis ; Virtual reality</subject><ispartof>IEEE access, 2019, Vol.7, p.180503-180511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</citedby><cites>FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</cites><orcidid>0000-0002-5717-3290 ; 0000-0003-0329-6321 ; 0000-0002-8502-1809 ; 0000-0001-8080-3791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926406$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Zhu, Dandan</creatorcontrib><creatorcontrib>Zhou, Qiangqiang</creatorcontrib><creatorcontrib>Han, Tian</creatorcontrib><creatorcontrib>Chen, Yongqing</creatorcontrib><title>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</title><title>IEEE access</title><addtitle>Access</addtitle><description>Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data.</description><subject>Computational modeling</subject><subject>correlation layer</subject><subject>Data models</subject><subject>Deep learning</subject><subject>generative model</subject><subject>Generators</subject><subject>Head</subject><subject>Hidden Markov models</subject><subject>Machine learning</subject><subject>Magnetic heads</subject><subject>panorama</subject><subject>Prediction models</subject><subject>saliency prediction</subject><subject>Synthesis</subject><subject>Virtual reality</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIINgv2CUS5458NzmOwmDSJBADrpHXeqPT1kBSQPv3ZBRN-GL7ye_Z1suyIaMjxqi9Gpfl7Xw-4pTZEbfKMMaOsjPOtM2FEvr4X32aDWJc0xQmQao4y56EpuQGVwGRPELrA2yBzHdt94axiWQS_JbM8eMT266BDXlt8DuSa4hYE9-S6fY9-K9UT8r8BtuILXbxIjtZwibi4C-fZy-T2-fyPp893E3L8SyvJDVdDoLXNXDUha11hUwqNLoATK3QVvAF52ClSVitJBqDtSmWyCpptVHUKHGeTXvd2sPavYdmC2HnPDTuF_Bh5SB0TbVBV3CAwlrJgFIJyGAhrNaULiirF9XSJq3LXiv9k56NnVv7z9Cm8x2XSmkhpNxPiX6qCj7GgMvDVkbd3gvXe-H2Xrg_LxJr2LMaRDwwjOVaUi1-AGEdgtI</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhu, Dandan</creator><creator>Zhou, Qiangqiang</creator><creator>Han, Tian</creator><creator>Chen, Yongqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5717-3290</orcidid><orcidid>https://orcid.org/0000-0003-0329-6321</orcidid><orcidid>https://orcid.org/0000-0002-8502-1809</orcidid><orcidid>https://orcid.org/0000-0001-8080-3791</orcidid></search><sort><creationdate>2019</creationdate><title>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</title><author>Zhu, Dandan ; Zhou, Qiangqiang ; Han, Tian ; Chen, Yongqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>correlation layer</topic><topic>Data models</topic><topic>Deep learning</topic><topic>generative model</topic><topic>Generators</topic><topic>Head</topic><topic>Hidden Markov models</topic><topic>Machine learning</topic><topic>Magnetic heads</topic><topic>panorama</topic><topic>Prediction models</topic><topic>saliency prediction</topic><topic>Synthesis</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Dandan</creatorcontrib><creatorcontrib>Zhou, Qiangqiang</creatorcontrib><creatorcontrib>Han, Tian</creatorcontrib><creatorcontrib>Chen, Yongqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Dandan</au><au>Zhou, Qiangqiang</au><au>Han, Tian</au><au>Chen, Yongqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>180503</spage><epage>180511</epage><pages>180503-180511</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2958111</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5717-3290</orcidid><orcidid>https://orcid.org/0000-0003-0329-6321</orcidid><orcidid>https://orcid.org/0000-0002-8502-1809</orcidid><orcidid>https://orcid.org/0000-0001-8080-3791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.180503-180511
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455633449
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computational modeling
correlation layer
Data models
Deep learning
generative model
Generators
Head
Hidden Markov models
Machine learning
Magnetic heads
panorama
Prediction models
saliency prediction
Synthesis
Virtual reality
title 360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=360%20Degree%20Panorama%20Synthesis%20From%20Sequential%20Views%20Based%20on%20Improved%20FC-Densenets&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Dandan&rft.date=2019&rft.volume=7&rft.spage=180503&rft.epage=180511&rft.pages=180503-180511&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2958111&rft_dat=%3Cproquest_ieee_%3E2455633449%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455633449&rft_id=info:pmid/&rft_ieee_id=8926406&rft_doaj_id=oai_doaj_org_article_72aa79941a004ae1ab396600b01dbcf9&rfr_iscdi=true