360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets
Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.180503-180511 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180511 |
---|---|
container_issue | |
container_start_page | 180503 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhu, Dandan Zhou, Qiangqiang Han, Tian Chen, Yongqing |
description | Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data. |
doi_str_mv | 10.1109/ACCESS.2019.2958111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455633449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926406</ieee_id><doaj_id>oai_doaj_org_article_72aa79941a004ae1ab396600b01dbcf9</doaj_id><sourcerecordid>2455633449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIINgv2CUS5458NzmOwmDSJBADrpHXeqPT1kBSQPv3ZBRN-GL7ye_Z1suyIaMjxqi9Gpfl7Xw-4pTZEbfKMMaOsjPOtM2FEvr4X32aDWJc0xQmQao4y56EpuQGVwGRPELrA2yBzHdt94axiWQS_JbM8eMT266BDXlt8DuSa4hYE9-S6fY9-K9UT8r8BtuILXbxIjtZwibi4C-fZy-T2-fyPp893E3L8SyvJDVdDoLXNXDUha11hUwqNLoATK3QVvAF52ClSVitJBqDtSmWyCpptVHUKHGeTXvd2sPavYdmC2HnPDTuF_Bh5SB0TbVBV3CAwlrJgFIJyGAhrNaULiirF9XSJq3LXiv9k56NnVv7z9Cm8x2XSmkhpNxPiX6qCj7GgMvDVkbd3gvXe-H2Xrg_LxJr2LMaRDwwjOVaUi1-AGEdgtI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633449</pqid></control><display><type>article</type><title>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Dandan ; Zhou, Qiangqiang ; Han, Tian ; Chen, Yongqing</creator><creatorcontrib>Zhu, Dandan ; Zhou, Qiangqiang ; Han, Tian ; Chen, Yongqing</creatorcontrib><description>Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2958111</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; correlation layer ; Data models ; Deep learning ; generative model ; Generators ; Head ; Hidden Markov models ; Machine learning ; Magnetic heads ; panorama ; Prediction models ; saliency prediction ; Synthesis ; Virtual reality</subject><ispartof>IEEE access, 2019, Vol.7, p.180503-180511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</citedby><cites>FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</cites><orcidid>0000-0002-5717-3290 ; 0000-0003-0329-6321 ; 0000-0002-8502-1809 ; 0000-0001-8080-3791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926406$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Zhu, Dandan</creatorcontrib><creatorcontrib>Zhou, Qiangqiang</creatorcontrib><creatorcontrib>Han, Tian</creatorcontrib><creatorcontrib>Chen, Yongqing</creatorcontrib><title>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</title><title>IEEE access</title><addtitle>Access</addtitle><description>Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data.</description><subject>Computational modeling</subject><subject>correlation layer</subject><subject>Data models</subject><subject>Deep learning</subject><subject>generative model</subject><subject>Generators</subject><subject>Head</subject><subject>Hidden Markov models</subject><subject>Machine learning</subject><subject>Magnetic heads</subject><subject>panorama</subject><subject>Prediction models</subject><subject>saliency prediction</subject><subject>Synthesis</subject><subject>Virtual reality</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIINgv2CUS5458NzmOwmDSJBADrpHXeqPT1kBSQPv3ZBRN-GL7ye_Z1suyIaMjxqi9Gpfl7Xw-4pTZEbfKMMaOsjPOtM2FEvr4X32aDWJc0xQmQao4y56EpuQGVwGRPELrA2yBzHdt94axiWQS_JbM8eMT266BDXlt8DuSa4hYE9-S6fY9-K9UT8r8BtuILXbxIjtZwibi4C-fZy-T2-fyPp893E3L8SyvJDVdDoLXNXDUha11hUwqNLoATK3QVvAF52ClSVitJBqDtSmWyCpptVHUKHGeTXvd2sPavYdmC2HnPDTuF_Bh5SB0TbVBV3CAwlrJgFIJyGAhrNaULiirF9XSJq3LXiv9k56NnVv7z9Cm8x2XSmkhpNxPiX6qCj7GgMvDVkbd3gvXe-H2Xrg_LxJr2LMaRDwwjOVaUi1-AGEdgtI</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhu, Dandan</creator><creator>Zhou, Qiangqiang</creator><creator>Han, Tian</creator><creator>Chen, Yongqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5717-3290</orcidid><orcidid>https://orcid.org/0000-0003-0329-6321</orcidid><orcidid>https://orcid.org/0000-0002-8502-1809</orcidid><orcidid>https://orcid.org/0000-0001-8080-3791</orcidid></search><sort><creationdate>2019</creationdate><title>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</title><author>Zhu, Dandan ; Zhou, Qiangqiang ; Han, Tian ; Chen, Yongqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a32dda2e679d6ce145e867ae79d36932b22a948867d54e88ed87fe1c496850853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>correlation layer</topic><topic>Data models</topic><topic>Deep learning</topic><topic>generative model</topic><topic>Generators</topic><topic>Head</topic><topic>Hidden Markov models</topic><topic>Machine learning</topic><topic>Magnetic heads</topic><topic>panorama</topic><topic>Prediction models</topic><topic>saliency prediction</topic><topic>Synthesis</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Dandan</creatorcontrib><creatorcontrib>Zhou, Qiangqiang</creatorcontrib><creatorcontrib>Han, Tian</creatorcontrib><creatorcontrib>Chen, Yongqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Dandan</au><au>Zhou, Qiangqiang</au><au>Han, Tian</au><au>Chen, Yongqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>180503</spage><epage>180511</epage><pages>180503-180511</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Inspired by the effectiveness of deep learning model, many panorama saliency prediction models based on deep learning began to emerge and achieved significant performance improvement. However, this kind of model requires a large number of labeled ground-truth data, and the existing panorama datasets are small-scale and difficult to train the deep learning models. To address this problem, we propose a novel panorama generative model for synthesizing realistic and sharp-looking panorama. In particular, our proposed panorama generative model consists of two sub-networks of generator and discriminator. At first, in order to make the synthesized panorama more realistic, we employ the improved Fully-Convolutional Densely Connected Convolutional Networks (FC-DenseNets) as the generator network. Secondly, we design a new correlation layer in the discriminator network, which can calculate the similarity between the generated image and the ground-truth image, and achieve the pixel level accuracy. The experimental results show that our proposed method outperforms other baseline work and has superior generalization ability to synthesize real-world data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2958111</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5717-3290</orcidid><orcidid>https://orcid.org/0000-0003-0329-6321</orcidid><orcidid>https://orcid.org/0000-0002-8502-1809</orcidid><orcidid>https://orcid.org/0000-0001-8080-3791</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.180503-180511 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455633449 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computational modeling correlation layer Data models Deep learning generative model Generators Head Hidden Markov models Machine learning Magnetic heads panorama Prediction models saliency prediction Synthesis Virtual reality |
title | 360 Degree Panorama Synthesis From Sequential Views Based on Improved FC-Densenets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=360%20Degree%20Panorama%20Synthesis%20From%20Sequential%20Views%20Based%20on%20Improved%20FC-Densenets&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Dandan&rft.date=2019&rft.volume=7&rft.spage=180503&rft.epage=180511&rft.pages=180503-180511&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2958111&rft_dat=%3Cproquest_ieee_%3E2455633449%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455633449&rft_id=info:pmid/&rft_ieee_id=8926406&rft_doaj_id=oai_doaj_org_article_72aa79941a004ae1ab396600b01dbcf9&rfr_iscdi=true |