A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery
In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. How...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.49191-49200 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49200 |
---|---|
container_issue | |
container_start_page | 49191 |
container_title | IEEE access |
container_volume | 7 |
creator | Peng, Kai Du, Jingxuan Lu, Fang Sun, Qianguo Dong, Yan Zhou, Pan Hu, Menglan |
description | In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms. |
doi_str_mv | 10.1109/ACCESS.2019.2910134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455633378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8692362</ieee_id><doaj_id>oai_doaj_org_article_4fb6f0abe2ce4eb4bd37f836bf515804</doaj_id><sourcerecordid>2455633378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaKgqL_AS8Bz13xveizrJyiKq15Dkk52s9RGk1bYf2_XijiXmXnMe_PgFcUZwTNCcHVRLxZXy-WMYlLNaEUwYXyvOKJEViUTTO7_mw-L05w3eCw1QmJ-VECNbrc2hQbdQAd9cKhuVzGFfv2OYoee49CHboVM16ClW0MztLvVx4TeYB1cC2Wdc8g9NOhhaPtQXqbYAXoyyUGLLqENX5C2J8WBN22G099-XLxeX70sbsv7x5u7RX1fOkF5XwoD4BhmHFTl5kpJ4IzNrcPeO-8J5hYIpsRgVTVWKsKUUMYwq5TDwIlkx8XdpNtEs9EfKbybtNXRBP0DxLTSJvU725p7Kz02FqgDDpbbhs29YtJ6QYTCfNQ6n7Q-UvwcIPd6E4fUjfY15UJINlpT4xWbrlyKOSfwf18J1rt49BSP3sWjf-MZWWcTKwDAH0PJijJJ2TedC4te</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633378</pqid></control><display><type>article</type><title>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Peng, Kai ; Du, Jingxuan ; Lu, Fang ; Sun, Qianguo ; Dong, Yan ; Zhou, Pan ; Hu, Menglan</creator><creatorcontrib>Peng, Kai ; Du, Jingxuan ; Lu, Fang ; Sun, Qianguo ; Dong, Yan ; Zhou, Pan ; Hu, Menglan</creatorcontrib><description>In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2910134</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>cargo delivery ; Customers ; Drone aircraft ; Drone vehicles ; Drones ; Education ; Energy consumption ; Genetic algorithms ; Land vehicles ; Logistics ; Performance evaluation ; Rotary wing aircraft ; Route planning ; Routing ; Scheduling ; Sociology ; Statistics ; Unmanned aerial vehicle ; Unmanned aerial vehicles ; Vehicles</subject><ispartof>IEEE access, 2019, Vol.7, p.49191-49200</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</citedby><cites>FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</cites><orcidid>0000-0001-9910-4237 ; 0000-0003-2800-4348 ; 0000-0001-9295-1660 ; 0000-0002-9491-4895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8692362$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Peng, Kai</creatorcontrib><creatorcontrib>Du, Jingxuan</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Sun, Qianguo</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Hu, Menglan</creatorcontrib><title>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms.</description><subject>cargo delivery</subject><subject>Customers</subject><subject>Drone aircraft</subject><subject>Drone vehicles</subject><subject>Drones</subject><subject>Education</subject><subject>Energy consumption</subject><subject>Genetic algorithms</subject><subject>Land vehicles</subject><subject>Logistics</subject><subject>Performance evaluation</subject><subject>Rotary wing aircraft</subject><subject>Route planning</subject><subject>Routing</subject><subject>Scheduling</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Unmanned aerial vehicle</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaKgqL_AS8Bz13xveizrJyiKq15Dkk52s9RGk1bYf2_XijiXmXnMe_PgFcUZwTNCcHVRLxZXy-WMYlLNaEUwYXyvOKJEViUTTO7_mw-L05w3eCw1QmJ-VECNbrc2hQbdQAd9cKhuVzGFfv2OYoee49CHboVM16ClW0MztLvVx4TeYB1cC2Wdc8g9NOhhaPtQXqbYAXoyyUGLLqENX5C2J8WBN22G099-XLxeX70sbsv7x5u7RX1fOkF5XwoD4BhmHFTl5kpJ4IzNrcPeO-8J5hYIpsRgVTVWKsKUUMYwq5TDwIlkx8XdpNtEs9EfKbybtNXRBP0DxLTSJvU725p7Kz02FqgDDpbbhs29YtJ6QYTCfNQ6n7Q-UvwcIPd6E4fUjfY15UJINlpT4xWbrlyKOSfwf18J1rt49BSP3sWjf-MZWWcTKwDAH0PJijJJ2TedC4te</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Peng, Kai</creator><creator>Du, Jingxuan</creator><creator>Lu, Fang</creator><creator>Sun, Qianguo</creator><creator>Dong, Yan</creator><creator>Zhou, Pan</creator><creator>Hu, Menglan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9910-4237</orcidid><orcidid>https://orcid.org/0000-0003-2800-4348</orcidid><orcidid>https://orcid.org/0000-0001-9295-1660</orcidid><orcidid>https://orcid.org/0000-0002-9491-4895</orcidid></search><sort><creationdate>2019</creationdate><title>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</title><author>Peng, Kai ; Du, Jingxuan ; Lu, Fang ; Sun, Qianguo ; Dong, Yan ; Zhou, Pan ; Hu, Menglan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>cargo delivery</topic><topic>Customers</topic><topic>Drone aircraft</topic><topic>Drone vehicles</topic><topic>Drones</topic><topic>Education</topic><topic>Energy consumption</topic><topic>Genetic algorithms</topic><topic>Land vehicles</topic><topic>Logistics</topic><topic>Performance evaluation</topic><topic>Rotary wing aircraft</topic><topic>Route planning</topic><topic>Routing</topic><topic>Scheduling</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Unmanned aerial vehicle</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Kai</creatorcontrib><creatorcontrib>Du, Jingxuan</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Sun, Qianguo</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Hu, Menglan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Kai</au><au>Du, Jingxuan</au><au>Lu, Fang</au><au>Sun, Qianguo</au><au>Dong, Yan</au><au>Zhou, Pan</au><au>Hu, Menglan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>49191</spage><epage>49200</epage><pages>49191-49200</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2910134</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9910-4237</orcidid><orcidid>https://orcid.org/0000-0003-2800-4348</orcidid><orcidid>https://orcid.org/0000-0001-9295-1660</orcidid><orcidid>https://orcid.org/0000-0002-9491-4895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.49191-49200 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455633378 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | cargo delivery Customers Drone aircraft Drone vehicles Drones Education Energy consumption Genetic algorithms Land vehicles Logistics Performance evaluation Rotary wing aircraft Route planning Routing Scheduling Sociology Statistics Unmanned aerial vehicle Unmanned aerial vehicles Vehicles |
title | A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Genetic%20Algorithm%20on%20Routing%20and%20Scheduling%20for%20Vehicle-Assisted%20Multi-Drone%20Parcel%20Delivery&rft.jtitle=IEEE%20access&rft.au=Peng,%20Kai&rft.date=2019&rft.volume=7&rft.spage=49191&rft.epage=49200&rft.pages=49191-49200&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2910134&rft_dat=%3Cproquest_doaj_%3E2455633378%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455633378&rft_id=info:pmid/&rft_ieee_id=8692362&rft_doaj_id=oai_doaj_org_article_4fb6f0abe2ce4eb4bd37f836bf515804&rfr_iscdi=true |