A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery

In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.49191-49200
Hauptverfasser: Peng, Kai, Du, Jingxuan, Lu, Fang, Sun, Qianguo, Dong, Yan, Zhou, Pan, Hu, Menglan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49200
container_issue
container_start_page 49191
container_title IEEE access
container_volume 7
creator Peng, Kai
Du, Jingxuan
Lu, Fang
Sun, Qianguo
Dong, Yan
Zhou, Pan
Hu, Menglan
description In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms.
doi_str_mv 10.1109/ACCESS.2019.2910134
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455633378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8692362</ieee_id><doaj_id>oai_doaj_org_article_4fb6f0abe2ce4eb4bd37f836bf515804</doaj_id><sourcerecordid>2455633378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaKgqL_AS8Bz13xveizrJyiKq15Dkk52s9RGk1bYf2_XijiXmXnMe_PgFcUZwTNCcHVRLxZXy-WMYlLNaEUwYXyvOKJEViUTTO7_mw-L05w3eCw1QmJ-VECNbrc2hQbdQAd9cKhuVzGFfv2OYoee49CHboVM16ClW0MztLvVx4TeYB1cC2Wdc8g9NOhhaPtQXqbYAXoyyUGLLqENX5C2J8WBN22G099-XLxeX70sbsv7x5u7RX1fOkF5XwoD4BhmHFTl5kpJ4IzNrcPeO-8J5hYIpsRgVTVWKsKUUMYwq5TDwIlkx8XdpNtEs9EfKbybtNXRBP0DxLTSJvU725p7Kz02FqgDDpbbhs29YtJ6QYTCfNQ6n7Q-UvwcIPd6E4fUjfY15UJINlpT4xWbrlyKOSfwf18J1rt49BSP3sWjf-MZWWcTKwDAH0PJijJJ2TedC4te</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633378</pqid></control><display><type>article</type><title>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Peng, Kai ; Du, Jingxuan ; Lu, Fang ; Sun, Qianguo ; Dong, Yan ; Zhou, Pan ; Hu, Menglan</creator><creatorcontrib>Peng, Kai ; Du, Jingxuan ; Lu, Fang ; Sun, Qianguo ; Dong, Yan ; Zhou, Pan ; Hu, Menglan</creatorcontrib><description>In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2910134</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>cargo delivery ; Customers ; Drone aircraft ; Drone vehicles ; Drones ; Education ; Energy consumption ; Genetic algorithms ; Land vehicles ; Logistics ; Performance evaluation ; Rotary wing aircraft ; Route planning ; Routing ; Scheduling ; Sociology ; Statistics ; Unmanned aerial vehicle ; Unmanned aerial vehicles ; Vehicles</subject><ispartof>IEEE access, 2019, Vol.7, p.49191-49200</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</citedby><cites>FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</cites><orcidid>0000-0001-9910-4237 ; 0000-0003-2800-4348 ; 0000-0001-9295-1660 ; 0000-0002-9491-4895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8692362$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Peng, Kai</creatorcontrib><creatorcontrib>Du, Jingxuan</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Sun, Qianguo</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Hu, Menglan</creatorcontrib><title>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms.</description><subject>cargo delivery</subject><subject>Customers</subject><subject>Drone aircraft</subject><subject>Drone vehicles</subject><subject>Drones</subject><subject>Education</subject><subject>Energy consumption</subject><subject>Genetic algorithms</subject><subject>Land vehicles</subject><subject>Logistics</subject><subject>Performance evaluation</subject><subject>Rotary wing aircraft</subject><subject>Route planning</subject><subject>Routing</subject><subject>Scheduling</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Unmanned aerial vehicle</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaKgqL_AS8Bz13xveizrJyiKq15Dkk52s9RGk1bYf2_XijiXmXnMe_PgFcUZwTNCcHVRLxZXy-WMYlLNaEUwYXyvOKJEViUTTO7_mw-L05w3eCw1QmJ-VECNbrc2hQbdQAd9cKhuVzGFfv2OYoee49CHboVM16ClW0MztLvVx4TeYB1cC2Wdc8g9NOhhaPtQXqbYAXoyyUGLLqENX5C2J8WBN22G099-XLxeX70sbsv7x5u7RX1fOkF5XwoD4BhmHFTl5kpJ4IzNrcPeO-8J5hYIpsRgVTVWKsKUUMYwq5TDwIlkx8XdpNtEs9EfKbybtNXRBP0DxLTSJvU725p7Kz02FqgDDpbbhs29YtJ6QYTCfNQ6n7Q-UvwcIPd6E4fUjfY15UJINlpT4xWbrlyKOSfwf18J1rt49BSP3sWjf-MZWWcTKwDAH0PJijJJ2TedC4te</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Peng, Kai</creator><creator>Du, Jingxuan</creator><creator>Lu, Fang</creator><creator>Sun, Qianguo</creator><creator>Dong, Yan</creator><creator>Zhou, Pan</creator><creator>Hu, Menglan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9910-4237</orcidid><orcidid>https://orcid.org/0000-0003-2800-4348</orcidid><orcidid>https://orcid.org/0000-0001-9295-1660</orcidid><orcidid>https://orcid.org/0000-0002-9491-4895</orcidid></search><sort><creationdate>2019</creationdate><title>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</title><author>Peng, Kai ; Du, Jingxuan ; Lu, Fang ; Sun, Qianguo ; Dong, Yan ; Zhou, Pan ; Hu, Menglan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-5aeec3034e89c7886e4337bc0ffcff104be1021a089db6813858aa3b88c0e4163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>cargo delivery</topic><topic>Customers</topic><topic>Drone aircraft</topic><topic>Drone vehicles</topic><topic>Drones</topic><topic>Education</topic><topic>Energy consumption</topic><topic>Genetic algorithms</topic><topic>Land vehicles</topic><topic>Logistics</topic><topic>Performance evaluation</topic><topic>Rotary wing aircraft</topic><topic>Route planning</topic><topic>Routing</topic><topic>Scheduling</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Unmanned aerial vehicle</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Kai</creatorcontrib><creatorcontrib>Du, Jingxuan</creatorcontrib><creatorcontrib>Lu, Fang</creatorcontrib><creatorcontrib>Sun, Qianguo</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Hu, Menglan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Kai</au><au>Du, Jingxuan</au><au>Lu, Fang</au><au>Sun, Qianguo</au><au>Dong, Yan</au><au>Zhou, Pan</au><au>Hu, Menglan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>49191</spage><epage>49200</epage><pages>49191-49200</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, the unmanned aerial vehicles (UAVs) have exhibited significant market potential to greatly reduce the cost and time in the field of logistics. The use of UAVs to provide commercial courier has become an emerging industry, remarkably shifting the energy use of the freight sector. However, due to limited battery capacities, the flight duration of civilian rotorcraft UAVs is still short, hindering them from performing remote jobs. In this case, people customarily utilize ground vehicles to carry and assist UAVs in various applications, including cargo delivery. Most previous studies on vehicle-drone cooperative parcel delivery considered only one UAV, thereby suffering from low efficiency when serving a large number of customers. In this paper, we propose a novel hybrid genetic algorithm, which supports the cooperation of a ground vehicle and multiple UAVs for efficient parcel delivery. Our routing and scheduling algorithm allows multiple UAVs carried by the vehicle to simultaneously deliver multiple parcels to customers residing in different locations. The proposed algorithm consists of a pipeline of several modules: population management, heuristic population initialization, and population education. The performance evaluation results show that the proposed algorithm has significant efficiency over existing algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2910134</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9910-4237</orcidid><orcidid>https://orcid.org/0000-0003-2800-4348</orcidid><orcidid>https://orcid.org/0000-0001-9295-1660</orcidid><orcidid>https://orcid.org/0000-0002-9491-4895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.49191-49200
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455633378
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects cargo delivery
Customers
Drone aircraft
Drone vehicles
Drones
Education
Energy consumption
Genetic algorithms
Land vehicles
Logistics
Performance evaluation
Rotary wing aircraft
Route planning
Routing
Scheduling
Sociology
Statistics
Unmanned aerial vehicle
Unmanned aerial vehicles
Vehicles
title A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Genetic%20Algorithm%20on%20Routing%20and%20Scheduling%20for%20Vehicle-Assisted%20Multi-Drone%20Parcel%20Delivery&rft.jtitle=IEEE%20access&rft.au=Peng,%20Kai&rft.date=2019&rft.volume=7&rft.spage=49191&rft.epage=49200&rft.pages=49191-49200&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2910134&rft_dat=%3Cproquest_doaj_%3E2455633378%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455633378&rft_id=info:pmid/&rft_ieee_id=8692362&rft_doaj_id=oai_doaj_org_article_4fb6f0abe2ce4eb4bd37f836bf515804&rfr_iscdi=true