Solving Inverse Problems in Imaging via Deep Dictionary Learning

In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.37039-37049
Hauptverfasser: Lewis D., John, Singhal, Vanika, Majumdar, Angshul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37049
container_issue
container_start_page 37039
container_title IEEE access
container_volume 7
creator Lewis D., John
Singhal, Vanika
Majumdar, Angshul
description In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art.
doi_str_mv 10.1109/ACCESS.2018.2881492
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455633125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8554065</ieee_id><doaj_id>oai_doaj_org_article_d0a6acf986c142dc8da63ee7840ccda6</doaj_id><sourcerecordid>2455633125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</originalsourceid><addsrcrecordid>eNpNUE1rwkAQXUoLFesv8BLoWbvf2dwqatuA0ILtedlsZmUlZu0mCv33TRqRzmUe8-bNPB5CU4LnhODsabFcrrfbOcVEzalShGf0Bo0okdmMCSZv_-F7NGmaPe5KdSORjtDzNlRnX--SvD5DbCD5iKGo4NAkvk7yg9n13NmbZAVwTFbetj7UJv4kGzCx7sgHdOdM1cDk0sfo62X9uXybbd5f8-ViM7Mcq3YmOSuYTa2zCmgBKcY8LYlzmGeZIayglpTCgeTC0MwRl3Uw5ZgZbHlJGGFjlA93y2D2-hj9oXOhg_H6bxDiTpvYeluBLrGRxrpMSUs4La0qjWQAqeLY2h6P0eNw6xjD9wmaVu_DKdadfU25EJIxQkW3xYYtG0PTRHDXrwTrPnk9JK_75PUl-U41HVQeAK4KJQTHUrBfynl-QQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633125</pqid></control><display><type>article</type><title>Solving Inverse Problems in Imaging via Deep Dictionary Learning</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Lewis D., John ; Singhal, Vanika ; Majumdar, Angshul</creator><creatorcontrib>Lewis D., John ; Singhal, Vanika ; Majumdar, Angshul</creatorcontrib><description>In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2881492</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>deep learning ; Denoising ; Dictionaries ; dictionary learning ; Image reconstruction ; Inverse problems ; Learning ; Machine learning ; Neural networks ; Noise reduction ; reconstruction ; super-resolution ; Training ; Transforms</subject><ispartof>IEEE access, 2019, Vol.7, p.37039-37049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</citedby><cites>FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</cites><orcidid>0000-0002-9773-1488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8554065$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lewis D., John</creatorcontrib><creatorcontrib>Singhal, Vanika</creatorcontrib><creatorcontrib>Majumdar, Angshul</creatorcontrib><title>Solving Inverse Problems in Imaging via Deep Dictionary Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art.</description><subject>deep learning</subject><subject>Denoising</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>reconstruction</subject><subject>super-resolution</subject><subject>Training</subject><subject>Transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQXUoLFesv8BLoWbvf2dwqatuA0ILtedlsZmUlZu0mCv33TRqRzmUe8-bNPB5CU4LnhODsabFcrrfbOcVEzalShGf0Bo0okdmMCSZv_-F7NGmaPe5KdSORjtDzNlRnX--SvD5DbCD5iKGo4NAkvk7yg9n13NmbZAVwTFbetj7UJv4kGzCx7sgHdOdM1cDk0sfo62X9uXybbd5f8-ViM7Mcq3YmOSuYTa2zCmgBKcY8LYlzmGeZIayglpTCgeTC0MwRl3Uw5ZgZbHlJGGFjlA93y2D2-hj9oXOhg_H6bxDiTpvYeluBLrGRxrpMSUs4La0qjWQAqeLY2h6P0eNw6xjD9wmaVu_DKdadfU25EJIxQkW3xYYtG0PTRHDXrwTrPnk9JK_75PUl-U41HVQeAK4KJQTHUrBfynl-QQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lewis D., John</creator><creator>Singhal, Vanika</creator><creator>Majumdar, Angshul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9773-1488</orcidid></search><sort><creationdate>2019</creationdate><title>Solving Inverse Problems in Imaging via Deep Dictionary Learning</title><author>Lewis D., John ; Singhal, Vanika ; Majumdar, Angshul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>deep learning</topic><topic>Denoising</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>reconstruction</topic><topic>super-resolution</topic><topic>Training</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis D., John</creatorcontrib><creatorcontrib>Singhal, Vanika</creatorcontrib><creatorcontrib>Majumdar, Angshul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis D., John</au><au>Singhal, Vanika</au><au>Majumdar, Angshul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Inverse Problems in Imaging via Deep Dictionary Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>37039</spage><epage>37049</epage><pages>37039-37049</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2881492</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9773-1488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.37039-37049
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455633125
source Electronic Journals Library; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals
subjects deep learning
Denoising
Dictionaries
dictionary learning
Image reconstruction
Inverse problems
Learning
Machine learning
Neural networks
Noise reduction
reconstruction
super-resolution
Training
Transforms
title Solving Inverse Problems in Imaging via Deep Dictionary Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Inverse%20Problems%20in%20Imaging%20via%20Deep%20Dictionary%20Learning&rft.jtitle=IEEE%20access&rft.au=Lewis%20D.,%20John&rft.date=2019&rft.volume=7&rft.spage=37039&rft.epage=37049&rft.pages=37039-37049&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2881492&rft_dat=%3Cproquest_ieee_%3E2455633125%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455633125&rft_id=info:pmid/&rft_ieee_id=8554065&rft_doaj_id=oai_doaj_org_article_d0a6acf986c142dc8da63ee7840ccda6&rfr_iscdi=true