Solving Inverse Problems in Imaging via Deep Dictionary Learning
In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.37039-37049 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37049 |
---|---|
container_issue | |
container_start_page | 37039 |
container_title | IEEE access |
container_volume | 7 |
creator | Lewis D., John Singhal, Vanika Majumdar, Angshul |
description | In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art. |
doi_str_mv | 10.1109/ACCESS.2018.2881492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455633125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8554065</ieee_id><doaj_id>oai_doaj_org_article_d0a6acf986c142dc8da63ee7840ccda6</doaj_id><sourcerecordid>2455633125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</originalsourceid><addsrcrecordid>eNpNUE1rwkAQXUoLFesv8BLoWbvf2dwqatuA0ILtedlsZmUlZu0mCv33TRqRzmUe8-bNPB5CU4LnhODsabFcrrfbOcVEzalShGf0Bo0okdmMCSZv_-F7NGmaPe5KdSORjtDzNlRnX--SvD5DbCD5iKGo4NAkvk7yg9n13NmbZAVwTFbetj7UJv4kGzCx7sgHdOdM1cDk0sfo62X9uXybbd5f8-ViM7Mcq3YmOSuYTa2zCmgBKcY8LYlzmGeZIayglpTCgeTC0MwRl3Uw5ZgZbHlJGGFjlA93y2D2-hj9oXOhg_H6bxDiTpvYeluBLrGRxrpMSUs4La0qjWQAqeLY2h6P0eNw6xjD9wmaVu_DKdadfU25EJIxQkW3xYYtG0PTRHDXrwTrPnk9JK_75PUl-U41HVQeAK4KJQTHUrBfynl-QQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633125</pqid></control><display><type>article</type><title>Solving Inverse Problems in Imaging via Deep Dictionary Learning</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Lewis D., John ; Singhal, Vanika ; Majumdar, Angshul</creator><creatorcontrib>Lewis D., John ; Singhal, Vanika ; Majumdar, Angshul</creatorcontrib><description>In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2881492</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>deep learning ; Denoising ; Dictionaries ; dictionary learning ; Image reconstruction ; Inverse problems ; Learning ; Machine learning ; Neural networks ; Noise reduction ; reconstruction ; super-resolution ; Training ; Transforms</subject><ispartof>IEEE access, 2019, Vol.7, p.37039-37049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</citedby><cites>FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</cites><orcidid>0000-0002-9773-1488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8554065$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lewis D., John</creatorcontrib><creatorcontrib>Singhal, Vanika</creatorcontrib><creatorcontrib>Majumdar, Angshul</creatorcontrib><title>Solving Inverse Problems in Imaging via Deep Dictionary Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art.</description><subject>deep learning</subject><subject>Denoising</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>reconstruction</subject><subject>super-resolution</subject><subject>Training</subject><subject>Transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQXUoLFesv8BLoWbvf2dwqatuA0ILtedlsZmUlZu0mCv33TRqRzmUe8-bNPB5CU4LnhODsabFcrrfbOcVEzalShGf0Bo0okdmMCSZv_-F7NGmaPe5KdSORjtDzNlRnX--SvD5DbCD5iKGo4NAkvk7yg9n13NmbZAVwTFbetj7UJv4kGzCx7sgHdOdM1cDk0sfo62X9uXybbd5f8-ViM7Mcq3YmOSuYTa2zCmgBKcY8LYlzmGeZIayglpTCgeTC0MwRl3Uw5ZgZbHlJGGFjlA93y2D2-hj9oXOhg_H6bxDiTpvYeluBLrGRxrpMSUs4La0qjWQAqeLY2h6P0eNw6xjD9wmaVu_DKdadfU25EJIxQkW3xYYtG0PTRHDXrwTrPnk9JK_75PUl-U41HVQeAK4KJQTHUrBfynl-QQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lewis D., John</creator><creator>Singhal, Vanika</creator><creator>Majumdar, Angshul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9773-1488</orcidid></search><sort><creationdate>2019</creationdate><title>Solving Inverse Problems in Imaging via Deep Dictionary Learning</title><author>Lewis D., John ; Singhal, Vanika ; Majumdar, Angshul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-643b3c7cfc8e2be70047d1ff0499a13b2c1d5fe645a29f1f9e647403a0c4d1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>deep learning</topic><topic>Denoising</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>reconstruction</topic><topic>super-resolution</topic><topic>Training</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis D., John</creatorcontrib><creatorcontrib>Singhal, Vanika</creatorcontrib><creatorcontrib>Majumdar, Angshul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis D., John</au><au>Singhal, Vanika</au><au>Majumdar, Angshul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Inverse Problems in Imaging via Deep Dictionary Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>37039</spage><epage>37049</epage><pages>37039-37049</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In dictionary learning-based inversion, the dictionary and coefficients are learnt adaptively from the image during the inversion process; this is a shallow approach since one layer of the dictionary is learnt. This is the first work which proposes to adaptively learn multiple layers of dictionaries during inversion. This results in our deep dictionary learning-based inversion formulation. Experiments have been carried out on denoising, super-resolution, and reconstruction. For each problem, our proposed method outperforms the state-of-the-art.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2881492</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9773-1488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.37039-37049 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455633125 |
source | Electronic Journals Library; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals |
subjects | deep learning Denoising Dictionaries dictionary learning Image reconstruction Inverse problems Learning Machine learning Neural networks Noise reduction reconstruction super-resolution Training Transforms |
title | Solving Inverse Problems in Imaging via Deep Dictionary Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Inverse%20Problems%20in%20Imaging%20via%20Deep%20Dictionary%20Learning&rft.jtitle=IEEE%20access&rft.au=Lewis%20D.,%20John&rft.date=2019&rft.volume=7&rft.spage=37039&rft.epage=37049&rft.pages=37039-37049&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2881492&rft_dat=%3Cproquest_ieee_%3E2455633125%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455633125&rft_id=info:pmid/&rft_ieee_id=8554065&rft_doaj_id=oai_doaj_org_article_d0a6acf986c142dc8da63ee7840ccda6&rfr_iscdi=true |