Coarse Frequency Offset Estimation in MIMO Systems Using Neural Networks: A Solution With Higher Compatibility
Carrier frequency offset (CFO), which often occurs due to the mismatch between the local oscillators in transmitter and receiver, limits the performance of multiple-input multiple-output (MIMO) wireless communication systems. To recover the CFO, the first step is coarse CFO estimation. This paper pr...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.121565-121573 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121573 |
---|---|
container_issue | |
container_start_page | 121565 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhou, Mingda Huang, Xinming Feng, Zhe Liu, Youjian |
description | Carrier frequency offset (CFO), which often occurs due to the mismatch between the local oscillators in transmitter and receiver, limits the performance of multiple-input multiple-output (MIMO) wireless communication systems. To recover the CFO, the first step is coarse CFO estimation. This paper presents a neural network (NN) based coarse CFO estimator which has higher compatibility with a variety of MIMO systems, comparing with traditional CFO estimators. Instead of performing closed form calculation as some traditional estimators do, the proposed estimator transforms the estimation problem to a classification problem: classify the optimal coarse CFO estimate from a pool of coarse CFO candidates. Taking the advantage of neural networks, the proposed NN estimator can perform coarse CFO estimations for MIMO systems with different numbers of antennas and a variety of channel models. Meanwhile, the testing results show that the proposed NN estimator has promising performance and wide CFO acquisition range. |
doi_str_mv | 10.1109/ACCESS.2019.2937102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455631973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8811488</ieee_id><doaj_id>oai_doaj_org_article_478d155a463948f4b6d1461e93e9e7df</doaj_id><sourcerecordid>2455631973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6693c31fc7ae0a526cc4f9f8de637ad0771d029270649e3ad38d8cb4c1f7ddb13</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoDDWl-QS6Cnu1KK60-ejOL0xiS-uCEHoUsjRy565UryQT_-yrZEDqXGR7z3ny8prkheE4IVt8Xfb_cbOYtJmreKioIbj81ly3hakY7yj__V39prnPe4xqyQp24bMY-mpQB3Sb4e4LRntHa-wwFLXMJB1NCHFEY0cPqYY0251zgkNFTDuMO_YJTMkNN5SWmP_kHWqBNHE5vjN-hPKO7sHuGhPp4OFadbRhCOX9tLrwZMly_56vm6Xb52N_N7tc_V_3ifmYZlmXGuaKWEm-FAWy6llvLvPLSAafCOCwEcbhVrcCcKaDGUemk3TJLvHBuS-hVs5p0XTR7fUz1lHTW0QT9BsS00yaVYAfQTEhHus4wThWTnm25I4wTUBQUCOer1rdJ65hi_VEueh9Paazr65Z1HadECVq76NRlU8w5gf-YSrB-9UlPPulXn_S7T5V1M7ECAHwwpCSESUn_AYHpjoQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455631973</pqid></control><display><type>article</type><title>Coarse Frequency Offset Estimation in MIMO Systems Using Neural Networks: A Solution With Higher Compatibility</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Mingda ; Huang, Xinming ; Feng, Zhe ; Liu, Youjian</creator><creatorcontrib>Zhou, Mingda ; Huang, Xinming ; Feng, Zhe ; Liu, Youjian</creatorcontrib><description>Carrier frequency offset (CFO), which often occurs due to the mismatch between the local oscillators in transmitter and receiver, limits the performance of multiple-input multiple-output (MIMO) wireless communication systems. To recover the CFO, the first step is coarse CFO estimation. This paper presents a neural network (NN) based coarse CFO estimator which has higher compatibility with a variety of MIMO systems, comparing with traditional CFO estimators. Instead of performing closed form calculation as some traditional estimators do, the proposed estimator transforms the estimation problem to a classification problem: classify the optimal coarse CFO estimate from a pool of coarse CFO candidates. Taking the advantage of neural networks, the proposed NN estimator can perform coarse CFO estimations for MIMO systems with different numbers of antennas and a variety of channel models. Meanwhile, the testing results show that the proposed NN estimator has promising performance and wide CFO acquisition range.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2937102</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Carrier frequencies ; Coarse CFO estimation ; Compatibility ; Estimation ; Estimators ; higher compatibility ; MIMO ; MIMO communication ; neural network ; Neural networks ; Oscillators ; Receiving antennas ; Transmitting antennas ; Wireless communication ; Wireless communication systems ; Wireless communications</subject><ispartof>IEEE access, 2019, Vol.7, p.121565-121573</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6693c31fc7ae0a526cc4f9f8de637ad0771d029270649e3ad38d8cb4c1f7ddb13</citedby><cites>FETCH-LOGICAL-c408t-6693c31fc7ae0a526cc4f9f8de637ad0771d029270649e3ad38d8cb4c1f7ddb13</cites><orcidid>0000-0003-0584-3448 ; 0000-0002-3410-5471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8811488$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Zhou, Mingda</creatorcontrib><creatorcontrib>Huang, Xinming</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Liu, Youjian</creatorcontrib><title>Coarse Frequency Offset Estimation in MIMO Systems Using Neural Networks: A Solution With Higher Compatibility</title><title>IEEE access</title><addtitle>Access</addtitle><description>Carrier frequency offset (CFO), which often occurs due to the mismatch between the local oscillators in transmitter and receiver, limits the performance of multiple-input multiple-output (MIMO) wireless communication systems. To recover the CFO, the first step is coarse CFO estimation. This paper presents a neural network (NN) based coarse CFO estimator which has higher compatibility with a variety of MIMO systems, comparing with traditional CFO estimators. Instead of performing closed form calculation as some traditional estimators do, the proposed estimator transforms the estimation problem to a classification problem: classify the optimal coarse CFO estimate from a pool of coarse CFO candidates. Taking the advantage of neural networks, the proposed NN estimator can perform coarse CFO estimations for MIMO systems with different numbers of antennas and a variety of channel models. Meanwhile, the testing results show that the proposed NN estimator has promising performance and wide CFO acquisition range.</description><subject>Artificial neural networks</subject><subject>Carrier frequencies</subject><subject>Coarse CFO estimation</subject><subject>Compatibility</subject><subject>Estimation</subject><subject>Estimators</subject><subject>higher compatibility</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Oscillators</subject><subject>Receiving antennas</subject><subject>Transmitting antennas</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoDDWl-QS6Cnu1KK60-ejOL0xiS-uCEHoUsjRy565UryQT_-yrZEDqXGR7z3ny8prkheE4IVt8Xfb_cbOYtJmreKioIbj81ly3hakY7yj__V39prnPe4xqyQp24bMY-mpQB3Sb4e4LRntHa-wwFLXMJB1NCHFEY0cPqYY0251zgkNFTDuMO_YJTMkNN5SWmP_kHWqBNHE5vjN-hPKO7sHuGhPp4OFadbRhCOX9tLrwZMly_56vm6Xb52N_N7tc_V_3ifmYZlmXGuaKWEm-FAWy6llvLvPLSAafCOCwEcbhVrcCcKaDGUemk3TJLvHBuS-hVs5p0XTR7fUz1lHTW0QT9BsS00yaVYAfQTEhHus4wThWTnm25I4wTUBQUCOer1rdJ65hi_VEueh9Paazr65Z1HadECVq76NRlU8w5gf-YSrB-9UlPPulXn_S7T5V1M7ECAHwwpCSESUn_AYHpjoQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhou, Mingda</creator><creator>Huang, Xinming</creator><creator>Feng, Zhe</creator><creator>Liu, Youjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0584-3448</orcidid><orcidid>https://orcid.org/0000-0002-3410-5471</orcidid></search><sort><creationdate>2019</creationdate><title>Coarse Frequency Offset Estimation in MIMO Systems Using Neural Networks: A Solution With Higher Compatibility</title><author>Zhou, Mingda ; Huang, Xinming ; Feng, Zhe ; Liu, Youjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6693c31fc7ae0a526cc4f9f8de637ad0771d029270649e3ad38d8cb4c1f7ddb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Carrier frequencies</topic><topic>Coarse CFO estimation</topic><topic>Compatibility</topic><topic>Estimation</topic><topic>Estimators</topic><topic>higher compatibility</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Oscillators</topic><topic>Receiving antennas</topic><topic>Transmitting antennas</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingda</creatorcontrib><creatorcontrib>Huang, Xinming</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Liu, Youjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Mingda</au><au>Huang, Xinming</au><au>Feng, Zhe</au><au>Liu, Youjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse Frequency Offset Estimation in MIMO Systems Using Neural Networks: A Solution With Higher Compatibility</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>121565</spage><epage>121573</epage><pages>121565-121573</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Carrier frequency offset (CFO), which often occurs due to the mismatch between the local oscillators in transmitter and receiver, limits the performance of multiple-input multiple-output (MIMO) wireless communication systems. To recover the CFO, the first step is coarse CFO estimation. This paper presents a neural network (NN) based coarse CFO estimator which has higher compatibility with a variety of MIMO systems, comparing with traditional CFO estimators. Instead of performing closed form calculation as some traditional estimators do, the proposed estimator transforms the estimation problem to a classification problem: classify the optimal coarse CFO estimate from a pool of coarse CFO candidates. Taking the advantage of neural networks, the proposed NN estimator can perform coarse CFO estimations for MIMO systems with different numbers of antennas and a variety of channel models. Meanwhile, the testing results show that the proposed NN estimator has promising performance and wide CFO acquisition range.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2937102</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0584-3448</orcidid><orcidid>https://orcid.org/0000-0002-3410-5471</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.121565-121573 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455631973 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Carrier frequencies Coarse CFO estimation Compatibility Estimation Estimators higher compatibility MIMO MIMO communication neural network Neural networks Oscillators Receiving antennas Transmitting antennas Wireless communication Wireless communication systems Wireless communications |
title | Coarse Frequency Offset Estimation in MIMO Systems Using Neural Networks: A Solution With Higher Compatibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse%20Frequency%20Offset%20Estimation%20in%20MIMO%20Systems%20Using%20Neural%20Networks:%20A%20Solution%20With%20Higher%20Compatibility&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Mingda&rft.date=2019&rft.volume=7&rft.spage=121565&rft.epage=121573&rft.pages=121565-121573&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2937102&rft_dat=%3Cproquest_doaj_%3E2455631973%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455631973&rft_id=info:pmid/&rft_ieee_id=8811488&rft_doaj_id=oai_doaj_org_article_478d155a463948f4b6d1461e93e9e7df&rfr_iscdi=true |