Performance Evaluation of Multi-UAV System in Post-Disaster Application: Validated by HITL Simulator

This paper proposes an evaluation of unmanned aerial vehicles (UAVs) performance in the mapping of disaster-struck areas. Sendai city in Japan, which was struck by the Tohoku earthquake/tsunami disaster in 2011, was mapped using multi-heterogeneous UAV. Normal mapping and searching missions are chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.64386-64400
Hauptverfasser: Aljehani, Maher, Inoue, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an evaluation of unmanned aerial vehicles (UAVs) performance in the mapping of disaster-struck areas. Sendai city in Japan, which was struck by the Tohoku earthquake/tsunami disaster in 2011, was mapped using multi-heterogeneous UAV. Normal mapping and searching missions are challenging as human resources are limited, and rescue teams are always needed to participate in disaster response mission. Mapping data and UAV performance evaluation will help rescuers to access and commence rescue operations in disaster-affected areas more effectively. Herein, flight plan designs are based on the information recorded after the disaster and on the mapping capabilities of the UAVs. The numerical and statistical results of the mapping missions were validated by executing the missions on real-time flight experiments in a simulator and analyzing the flight logs of the UAVs. After considering many factors and elements that affect the outcomes of the mapping mission, the authors provide a significant amount of useful data relevant to real UAV modules in the market. All flight plans were verified both manually and in a hardware-in-the-loop simulator developed by the authors. Most of the existing simulators support only a single UAV feature and have limited functionalities such as the ability to run different models on multiple UAVs. The simulator demonstrated the mapping and fine-tuned flight plans on an imported map of the disaster. As revealed in the experiments, the presented results and performance evaluations can effectively distribute different UAV models in post-disaster mapping missions.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2917070