Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach

This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.34289-34300
Hauptverfasser: Quan, Meixiang, Piao, Songhao, Tan, Minglang, Huang, Shi-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34300
container_issue
container_start_page 34289
container_title IEEE access
container_volume 7
creator Quan, Meixiang
Piao, Songhao
Tan, Minglang
Huang, Shi-Sheng
description This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments.
doi_str_mv 10.1109/ACCESS.2019.2904512
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455627568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8665859</ieee_id><doaj_id>oai_doaj_org_article_1a1d9d56474f4841b9f94c720d136a82</doaj_id><sourcerecordid>2455627568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITINfwKUS544kTZzkWE0bTGziMOAapfmATmUdSXvg35PRacIXW7bfe7Zelt1hNMMYyYdqPl9stzOCsJwRiSjD5CKbEAyyKFkJl__q6-w2xh1KIVKL8Um2qowZgu5dvun2nRlaHfL3Jg66LVZ7F_pGt_l2XW3yt9jsP3Kdb_ShqGJsYu9svnhe5tXhEDptPm-yK6_b6G5PeZq9LRev86di_fK4mlfrwlAk-sIb7LkzJRjtgXIOXhJjCZPcW6yFBRBQ12AYN2lIAWpAzDoGVtacO1FOs9XIazu9U4fQfOnwozrdqL9GFz6UTneb1imssZWWJRnqqaC4ll5SwwmyuAQtSOK6H7nSC9-Di73adUPYp_MVoYwB4QyOiuW4ZUIXY3D-rIqROlqgRgvU0QJ1siCh7kZU45w7IwQAE0yWv25nf7k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455627568</pqid></control><display><type>article</type><title>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Quan, Meixiang ; Piao, Songhao ; Tan, Minglang ; Huang, Shi-Sheng</creator><creatorcontrib>Quan, Meixiang ; Piao, Songhao ; Tan, Minglang ; Huang, Shi-Sheng</creatorcontrib><description>This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2904512</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bundle adjustment ; Drift estimation ; Extended Kalman filter ; Feature extraction ; Kalman filters ; Modules ; Motion estimation ; Optimization ; Robot dynamics ; sensor fusion ; Simultaneous localization and mapping ; State vectors ; Tracking ; Visualization</subject><ispartof>IEEE access, 2019, Vol.7, p.34289-34300</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</citedby><cites>FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</cites><orcidid>0000-0003-3153-3646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8665859$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Quan, Meixiang</creatorcontrib><creatorcontrib>Piao, Songhao</creatorcontrib><creatorcontrib>Tan, Minglang</creatorcontrib><creatorcontrib>Huang, Shi-Sheng</creatorcontrib><title>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments.</description><subject>Algorithms</subject><subject>Bundle adjustment</subject><subject>Drift estimation</subject><subject>Extended Kalman filter</subject><subject>Feature extraction</subject><subject>Kalman filters</subject><subject>Modules</subject><subject>Motion estimation</subject><subject>Optimization</subject><subject>Robot dynamics</subject><subject>sensor fusion</subject><subject>Simultaneous localization and mapping</subject><subject>State vectors</subject><subject>Tracking</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITINfwKUS544kTZzkWE0bTGziMOAapfmATmUdSXvg35PRacIXW7bfe7Zelt1hNMMYyYdqPl9stzOCsJwRiSjD5CKbEAyyKFkJl__q6-w2xh1KIVKL8Um2qowZgu5dvun2nRlaHfL3Jg66LVZ7F_pGt_l2XW3yt9jsP3Kdb_ShqGJsYu9svnhe5tXhEDptPm-yK6_b6G5PeZq9LRev86di_fK4mlfrwlAk-sIb7LkzJRjtgXIOXhJjCZPcW6yFBRBQ12AYN2lIAWpAzDoGVtacO1FOs9XIazu9U4fQfOnwozrdqL9GFz6UTneb1imssZWWJRnqqaC4ll5SwwmyuAQtSOK6H7nSC9-Di73adUPYp_MVoYwB4QyOiuW4ZUIXY3D-rIqROlqgRgvU0QJ1siCh7kZU45w7IwQAE0yWv25nf7k</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Quan, Meixiang</creator><creator>Piao, Songhao</creator><creator>Tan, Minglang</creator><creator>Huang, Shi-Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3153-3646</orcidid></search><sort><creationdate>2019</creationdate><title>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</title><author>Quan, Meixiang ; Piao, Songhao ; Tan, Minglang ; Huang, Shi-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bundle adjustment</topic><topic>Drift estimation</topic><topic>Extended Kalman filter</topic><topic>Feature extraction</topic><topic>Kalman filters</topic><topic>Modules</topic><topic>Motion estimation</topic><topic>Optimization</topic><topic>Robot dynamics</topic><topic>sensor fusion</topic><topic>Simultaneous localization and mapping</topic><topic>State vectors</topic><topic>Tracking</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Meixiang</creatorcontrib><creatorcontrib>Piao, Songhao</creatorcontrib><creatorcontrib>Tan, Minglang</creatorcontrib><creatorcontrib>Huang, Shi-Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Meixiang</au><au>Piao, Songhao</au><au>Tan, Minglang</au><au>Huang, Shi-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>34289</spage><epage>34300</epage><pages>34289-34300</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2904512</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3153-3646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.34289-34300
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455627568
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Bundle adjustment
Drift estimation
Extended Kalman filter
Feature extraction
Kalman filters
Modules
Motion estimation
Optimization
Robot dynamics
sensor fusion
Simultaneous localization and mapping
State vectors
Tracking
Visualization
title Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Monocular%20Visual-Inertial%20SLAM%20Using%20a%20Map-Assisted%20EKF%20Approach&rft.jtitle=IEEE%20access&rft.au=Quan,%20Meixiang&rft.date=2019&rft.volume=7&rft.spage=34289&rft.epage=34300&rft.pages=34289-34300&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2904512&rft_dat=%3Cproquest_ieee_%3E2455627568%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455627568&rft_id=info:pmid/&rft_ieee_id=8665859&rft_doaj_id=oai_doaj_org_article_1a1d9d56474f4841b9f94c720d136a82&rfr_iscdi=true