Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach
This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of r...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.34289-34300 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34300 |
---|---|
container_issue | |
container_start_page | 34289 |
container_title | IEEE access |
container_volume | 7 |
creator | Quan, Meixiang Piao, Songhao Tan, Minglang Huang, Shi-Sheng |
description | This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments. |
doi_str_mv | 10.1109/ACCESS.2019.2904512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455627568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8665859</ieee_id><doaj_id>oai_doaj_org_article_1a1d9d56474f4841b9f94c720d136a82</doaj_id><sourcerecordid>2455627568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITINfwKUS544kTZzkWE0bTGziMOAapfmATmUdSXvg35PRacIXW7bfe7Zelt1hNMMYyYdqPl9stzOCsJwRiSjD5CKbEAyyKFkJl__q6-w2xh1KIVKL8Um2qowZgu5dvun2nRlaHfL3Jg66LVZ7F_pGt_l2XW3yt9jsP3Kdb_ShqGJsYu9svnhe5tXhEDptPm-yK6_b6G5PeZq9LRev86di_fK4mlfrwlAk-sIb7LkzJRjtgXIOXhJjCZPcW6yFBRBQ12AYN2lIAWpAzDoGVtacO1FOs9XIazu9U4fQfOnwozrdqL9GFz6UTneb1imssZWWJRnqqaC4ll5SwwmyuAQtSOK6H7nSC9-Di73adUPYp_MVoYwB4QyOiuW4ZUIXY3D-rIqROlqgRgvU0QJ1siCh7kZU45w7IwQAE0yWv25nf7k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455627568</pqid></control><display><type>article</type><title>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Quan, Meixiang ; Piao, Songhao ; Tan, Minglang ; Huang, Shi-Sheng</creator><creatorcontrib>Quan, Meixiang ; Piao, Songhao ; Tan, Minglang ; Huang, Shi-Sheng</creatorcontrib><description>This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2904512</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bundle adjustment ; Drift estimation ; Extended Kalman filter ; Feature extraction ; Kalman filters ; Modules ; Motion estimation ; Optimization ; Robot dynamics ; sensor fusion ; Simultaneous localization and mapping ; State vectors ; Tracking ; Visualization</subject><ispartof>IEEE access, 2019, Vol.7, p.34289-34300</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</citedby><cites>FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</cites><orcidid>0000-0003-3153-3646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8665859$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Quan, Meixiang</creatorcontrib><creatorcontrib>Piao, Songhao</creatorcontrib><creatorcontrib>Tan, Minglang</creatorcontrib><creatorcontrib>Huang, Shi-Sheng</creatorcontrib><title>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments.</description><subject>Algorithms</subject><subject>Bundle adjustment</subject><subject>Drift estimation</subject><subject>Extended Kalman filter</subject><subject>Feature extraction</subject><subject>Kalman filters</subject><subject>Modules</subject><subject>Motion estimation</subject><subject>Optimization</subject><subject>Robot dynamics</subject><subject>sensor fusion</subject><subject>Simultaneous localization and mapping</subject><subject>State vectors</subject><subject>Tracking</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITINfwKUS544kTZzkWE0bTGziMOAapfmATmUdSXvg35PRacIXW7bfe7Zelt1hNMMYyYdqPl9stzOCsJwRiSjD5CKbEAyyKFkJl__q6-w2xh1KIVKL8Um2qowZgu5dvun2nRlaHfL3Jg66LVZ7F_pGt_l2XW3yt9jsP3Kdb_ShqGJsYu9svnhe5tXhEDptPm-yK6_b6G5PeZq9LRev86di_fK4mlfrwlAk-sIb7LkzJRjtgXIOXhJjCZPcW6yFBRBQ12AYN2lIAWpAzDoGVtacO1FOs9XIazu9U4fQfOnwozrdqL9GFz6UTneb1imssZWWJRnqqaC4ll5SwwmyuAQtSOK6H7nSC9-Di73adUPYp_MVoYwB4QyOiuW4ZUIXY3D-rIqROlqgRgvU0QJ1siCh7kZU45w7IwQAE0yWv25nf7k</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Quan, Meixiang</creator><creator>Piao, Songhao</creator><creator>Tan, Minglang</creator><creator>Huang, Shi-Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3153-3646</orcidid></search><sort><creationdate>2019</creationdate><title>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</title><author>Quan, Meixiang ; Piao, Songhao ; Tan, Minglang ; Huang, Shi-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fc1f7ec36caf64776f92cd2597fd1a8d6686bb6c57c776466b605de56d9b77e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bundle adjustment</topic><topic>Drift estimation</topic><topic>Extended Kalman filter</topic><topic>Feature extraction</topic><topic>Kalman filters</topic><topic>Modules</topic><topic>Motion estimation</topic><topic>Optimization</topic><topic>Robot dynamics</topic><topic>sensor fusion</topic><topic>Simultaneous localization and mapping</topic><topic>State vectors</topic><topic>Tracking</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Meixiang</creatorcontrib><creatorcontrib>Piao, Songhao</creatorcontrib><creatorcontrib>Tan, Minglang</creatorcontrib><creatorcontrib>Huang, Shi-Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Meixiang</au><au>Piao, Songhao</au><au>Tan, Minglang</au><au>Huang, Shi-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>34289</spage><epage>34300</epage><pages>34289-34300</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a novel tightly coupled monocular visual-inertial simultaneous localization and mapping (SLAM) algorithm, which provides accurate and robust motion tracking at high frame rates on a standard CPU. In order to ensure the fast response of the system to the highly dynamic motion of robots, we perform the visual-inertial extended Kalman filter (EKF) to track the motion. The filter becomes inconsistent due to linearization errors. It is well known that EKF-based visual-inertial odometry (VIO) will provide no-drift motion estimates with respect to the landmarks maintained in the EKF state vector. Therefore, we construct the globally consistent map and feed back the map to the EKF state vector. In a parallel thread, we construct a global map and perform a keyframe-based visual-inertial bundle adjustment to optimize the map. In addition, a loop closure detection and correction module is also performed in a parallel thread to eliminate the accumulated drift when revisiting an area. Then, we occasionally feed back the constructed global map to the EKF VIO module to update and augment the EKF state vector, thereby improving the motion tracking accuracy of the EKF VIO estimator. The system provides accurate motion tracking that is comparable to the accuracy of the optimization-based method with per-frame processing time near to the filter-based method. The superiority of the proposed algorithm is validated in experiments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2904512</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3153-3646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.34289-34300 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455627568 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Bundle adjustment Drift estimation Extended Kalman filter Feature extraction Kalman filters Modules Motion estimation Optimization Robot dynamics sensor fusion Simultaneous localization and mapping State vectors Tracking Visualization |
title | Accurate Monocular Visual-Inertial SLAM Using a Map-Assisted EKF Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Monocular%20Visual-Inertial%20SLAM%20Using%20a%20Map-Assisted%20EKF%20Approach&rft.jtitle=IEEE%20access&rft.au=Quan,%20Meixiang&rft.date=2019&rft.volume=7&rft.spage=34289&rft.epage=34300&rft.pages=34289-34300&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2904512&rft_dat=%3Cproquest_ieee_%3E2455627568%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455627568&rft_id=info:pmid/&rft_ieee_id=8665859&rft_doaj_id=oai_doaj_org_article_1a1d9d56474f4841b9f94c720d136a82&rfr_iscdi=true |