Improved Tentacle-Based Guidance for Reentry Gliding Hypersonic Vehicle With No-Fly Zone Constraint

An improved tentacle-based bank-angle transient method that requires less computation and provides effective feedback is proposed to offer a new choice for reentry gliding hypersonic vehicle maneuvering guidance. The longitudinal guidance strategy of hypersonic vehicles is applied to track standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.119246-119258
Hauptverfasser: Gao, Yang, Cai, Guangbin, Yang, Xiaogang, Hou, Mingzhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119258
container_issue
container_start_page 119246
container_title IEEE access
container_volume 7
creator Gao, Yang
Cai, Guangbin
Yang, Xiaogang
Hou, Mingzhe
description An improved tentacle-based bank-angle transient method that requires less computation and provides effective feedback is proposed to offer a new choice for reentry gliding hypersonic vehicle maneuvering guidance. The longitudinal guidance strategy of hypersonic vehicles is applied to track standard trajectories, and the improved tentacle-based bank angle transient lateral strategy avoids static or dynamic no-fly zones. The proposed lateral strategy generates three tentacles for detection, addresses numerical heading angle limitations or no-fly zone constraints, and provides control commands through a time-counting filter. Dispersed cases are verified for static no-fly zones, and a warning area is proposed to avoid dynamic no-fly zones. For dynamic no-fly zones, the velocity and initial position of the no-fly zone are discussed in terms of the impact on the guidance. Finally, the guidance strategy is tested on a high-performance Common Aero Vehicle model in many flights, and all results for the constraints and computation time indicate that the improved tentacle-based guidance method is effective for avoiding no-fly zones where some information is unknown.
doi_str_mv 10.1109/ACCESS.2019.2936974
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455620579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8809704</ieee_id><doaj_id>oai_doaj_org_article_15ad062599cd428685d7ac813df71f4a</doaj_id><sourcerecordid>2455620579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5208033a57e8126f237f4adad3cbcef0eed83b61963251f0e542b869d141ce2c3</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXURB0X6BLwGft-ayySaPddFaEAXrBXwJaTJrU-qmJluhf2_qijgvcz1nhjlFcU7wmBCsLidNcz2fjykmakwVE6quDooTSoQqGWfi8F98XIxSWuFsMpd4fVLY2ccmhi9w6Am63tg1lFcm5XS69c50FlAbInqE3Iw7NF1757t3dLvbQEyh8xa9wNJnFHr1_RLdh_JmvUNvoQPUhC710fiuPyuOWrNOMPr1p8XzzfVTc1vePUxnzeSutBWWfckplpgxw2uQhIqWsrqtjDOO2YWFFgM4yRaCKMEoJznnFV1IoRypiAVq2WkxG3hdMCu9if7DxJ0OxuufQojv2sR-f60m3DgsKFfKuopKIbmrjZWEubYmeWvmuhi48nc-t5B6vQrb2OXzNa04FxTzWuUpNkzZGFKK0P5tJVjvxdGDOHovjv4VJ6POB5QHgD-ElFjVuGLfWUOKQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455620579</pqid></control><display><type>article</type><title>Improved Tentacle-Based Guidance for Reentry Gliding Hypersonic Vehicle With No-Fly Zone Constraint</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gao, Yang ; Cai, Guangbin ; Yang, Xiaogang ; Hou, Mingzhe</creator><creatorcontrib>Gao, Yang ; Cai, Guangbin ; Yang, Xiaogang ; Hou, Mingzhe</creatorcontrib><description>An improved tentacle-based bank-angle transient method that requires less computation and provides effective feedback is proposed to offer a new choice for reentry gliding hypersonic vehicle maneuvering guidance. The longitudinal guidance strategy of hypersonic vehicles is applied to track standard trajectories, and the improved tentacle-based bank angle transient lateral strategy avoids static or dynamic no-fly zones. The proposed lateral strategy generates three tentacles for detection, addresses numerical heading angle limitations or no-fly zone constraints, and provides control commands through a time-counting filter. Dispersed cases are verified for static no-fly zones, and a warning area is proposed to avoid dynamic no-fly zones. For dynamic no-fly zones, the velocity and initial position of the no-fly zone are discussed in terms of the impact on the guidance. Finally, the guidance strategy is tested on a high-performance Common Aero Vehicle model in many flights, and all results for the constraints and computation time indicate that the improved tentacle-based guidance method is effective for avoiding no-fly zones where some information is unknown.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2936974</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerodynamics ; Alliances ; Computation ; flight constraint ; Gliding ; Guidance (motion) ; Heating systems ; hypersonic vehicle ; Hypersonic vehicles ; no-fly zone(NFZ) ; Strategy ; Tentacle-based guidance ; Time factors ; Trajectory ; Transient analysis ; Vehicle dynamics ; warning area</subject><ispartof>IEEE access, 2019, Vol.7, p.119246-119258</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5208033a57e8126f237f4adad3cbcef0eed83b61963251f0e542b869d141ce2c3</citedby><cites>FETCH-LOGICAL-c408t-5208033a57e8126f237f4adad3cbcef0eed83b61963251f0e542b869d141ce2c3</cites><orcidid>0000-0001-9828-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8809704$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Cai, Guangbin</creatorcontrib><creatorcontrib>Yang, Xiaogang</creatorcontrib><creatorcontrib>Hou, Mingzhe</creatorcontrib><title>Improved Tentacle-Based Guidance for Reentry Gliding Hypersonic Vehicle With No-Fly Zone Constraint</title><title>IEEE access</title><addtitle>Access</addtitle><description>An improved tentacle-based bank-angle transient method that requires less computation and provides effective feedback is proposed to offer a new choice for reentry gliding hypersonic vehicle maneuvering guidance. The longitudinal guidance strategy of hypersonic vehicles is applied to track standard trajectories, and the improved tentacle-based bank angle transient lateral strategy avoids static or dynamic no-fly zones. The proposed lateral strategy generates three tentacles for detection, addresses numerical heading angle limitations or no-fly zone constraints, and provides control commands through a time-counting filter. Dispersed cases are verified for static no-fly zones, and a warning area is proposed to avoid dynamic no-fly zones. For dynamic no-fly zones, the velocity and initial position of the no-fly zone are discussed in terms of the impact on the guidance. Finally, the guidance strategy is tested on a high-performance Common Aero Vehicle model in many flights, and all results for the constraints and computation time indicate that the improved tentacle-based guidance method is effective for avoiding no-fly zones where some information is unknown.</description><subject>Aerodynamics</subject><subject>Alliances</subject><subject>Computation</subject><subject>flight constraint</subject><subject>Gliding</subject><subject>Guidance (motion)</subject><subject>Heating systems</subject><subject>hypersonic vehicle</subject><subject>Hypersonic vehicles</subject><subject>no-fly zone(NFZ)</subject><subject>Strategy</subject><subject>Tentacle-based guidance</subject><subject>Time factors</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>Vehicle dynamics</subject><subject>warning area</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXURB0X6BLwGft-ayySaPddFaEAXrBXwJaTJrU-qmJluhf2_qijgvcz1nhjlFcU7wmBCsLidNcz2fjykmakwVE6quDooTSoQqGWfi8F98XIxSWuFsMpd4fVLY2ccmhi9w6Am63tg1lFcm5XS69c50FlAbInqE3Iw7NF1757t3dLvbQEyh8xa9wNJnFHr1_RLdh_JmvUNvoQPUhC710fiuPyuOWrNOMPr1p8XzzfVTc1vePUxnzeSutBWWfckplpgxw2uQhIqWsrqtjDOO2YWFFgM4yRaCKMEoJznnFV1IoRypiAVq2WkxG3hdMCu9if7DxJ0OxuufQojv2sR-f60m3DgsKFfKuopKIbmrjZWEubYmeWvmuhi48nc-t5B6vQrb2OXzNa04FxTzWuUpNkzZGFKK0P5tJVjvxdGDOHovjv4VJ6POB5QHgD-ElFjVuGLfWUOKQw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Gao, Yang</creator><creator>Cai, Guangbin</creator><creator>Yang, Xiaogang</creator><creator>Hou, Mingzhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9828-0618</orcidid></search><sort><creationdate>2019</creationdate><title>Improved Tentacle-Based Guidance for Reentry Gliding Hypersonic Vehicle With No-Fly Zone Constraint</title><author>Gao, Yang ; Cai, Guangbin ; Yang, Xiaogang ; Hou, Mingzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5208033a57e8126f237f4adad3cbcef0eed83b61963251f0e542b869d141ce2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Alliances</topic><topic>Computation</topic><topic>flight constraint</topic><topic>Gliding</topic><topic>Guidance (motion)</topic><topic>Heating systems</topic><topic>hypersonic vehicle</topic><topic>Hypersonic vehicles</topic><topic>no-fly zone(NFZ)</topic><topic>Strategy</topic><topic>Tentacle-based guidance</topic><topic>Time factors</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>Vehicle dynamics</topic><topic>warning area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Cai, Guangbin</creatorcontrib><creatorcontrib>Yang, Xiaogang</creatorcontrib><creatorcontrib>Hou, Mingzhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yang</au><au>Cai, Guangbin</au><au>Yang, Xiaogang</au><au>Hou, Mingzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Tentacle-Based Guidance for Reentry Gliding Hypersonic Vehicle With No-Fly Zone Constraint</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>119246</spage><epage>119258</epage><pages>119246-119258</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>An improved tentacle-based bank-angle transient method that requires less computation and provides effective feedback is proposed to offer a new choice for reentry gliding hypersonic vehicle maneuvering guidance. The longitudinal guidance strategy of hypersonic vehicles is applied to track standard trajectories, and the improved tentacle-based bank angle transient lateral strategy avoids static or dynamic no-fly zones. The proposed lateral strategy generates three tentacles for detection, addresses numerical heading angle limitations or no-fly zone constraints, and provides control commands through a time-counting filter. Dispersed cases are verified for static no-fly zones, and a warning area is proposed to avoid dynamic no-fly zones. For dynamic no-fly zones, the velocity and initial position of the no-fly zone are discussed in terms of the impact on the guidance. Finally, the guidance strategy is tested on a high-performance Common Aero Vehicle model in many flights, and all results for the constraints and computation time indicate that the improved tentacle-based guidance method is effective for avoiding no-fly zones where some information is unknown.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2936974</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9828-0618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.119246-119258
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455620579
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aerodynamics
Alliances
Computation
flight constraint
Gliding
Guidance (motion)
Heating systems
hypersonic vehicle
Hypersonic vehicles
no-fly zone(NFZ)
Strategy
Tentacle-based guidance
Time factors
Trajectory
Transient analysis
Vehicle dynamics
warning area
title Improved Tentacle-Based Guidance for Reentry Gliding Hypersonic Vehicle With No-Fly Zone Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Tentacle-Based%20Guidance%20for%20Reentry%20Gliding%20Hypersonic%20Vehicle%20With%20No-Fly%20Zone%20Constraint&rft.jtitle=IEEE%20access&rft.au=Gao,%20Yang&rft.date=2019&rft.volume=7&rft.spage=119246&rft.epage=119258&rft.pages=119246-119258&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2936974&rft_dat=%3Cproquest_ieee_%3E2455620579%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455620579&rft_id=info:pmid/&rft_ieee_id=8809704&rft_doaj_id=oai_doaj_org_article_15ad062599cd428685d7ac813df71f4a&rfr_iscdi=true