A Novel Data Processing Technique for Expert Resonant Nano-Pillars Transducers: A Case Study Measuring Ethanol in Water and Wine Liquid Matrices

This paper proposes a novel readout methodology for improving the performance of Refractive Index (RI) based photonic transducers. Specifically, the authors focus on an optical transducer reported recently in the literature, the so-called Resonant Nano-Pillars (RNPs) transducer. The readout signal f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.129778-129788
Hauptverfasser: Quintero, Sergio, Marino, Rodrigo, Lanza-Gutierrez, Jose M., Sanza, Francisco Javier, Riesgo, Teresa, Holgado, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129788
container_issue
container_start_page 129778
container_title IEEE access
container_volume 7
creator Quintero, Sergio
Marino, Rodrigo
Lanza-Gutierrez, Jose M.
Sanza, Francisco Javier
Riesgo, Teresa
Holgado, Miguel
description This paper proposes a novel readout methodology for improving the performance of Refractive Index (RI) based photonic transducers. Specifically, the authors focus on an optical transducer reported recently in the literature, the so-called Resonant Nano-Pillars (RNPs) transducer. The readout signal for this transducer is usually obtained based on the Wavelength Shift of the Resonant Mode (WSRM), which identifies a single point from the signal, such as the minimum of a resonant mode, whose wavelength shift or intensity value has a correlation with the RI of the media, and, therefore, with the monitored chemical component. This work proposes a novel spectral analysis through Principal Component Analysis (PCA), later inferring the property of interest by regression techniques. To evaluate the performance of the proposal, the authors mimic an agro-food experiment emulating a fermentation process as a proof of concept by measuring the ethanol concentration over time in two liquids: Deionized Water (DIW) and White Wine (WW). The authors compare both methods by inferring the ethanol concentration in the two experiments. As a result, the authors demonstrated experimentally that the proposal significantly outperformed the WSRM method, reporting an improvement of the Limit of Detection (LoD) of up to 140 times. Moreover, this PCA method can be also applied to many other biochemical sensing systems and transducers.
doi_str_mv 10.1109/ACCESS.2019.2939576
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455620569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8827919</ieee_id><doaj_id>oai_doaj_org_article_1d671505e94d4052802e3f5e27a8437c</doaj_id><sourcerecordid>2455620569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-886edc7869e0bff1d3f23cd279cc461e0c13dd396368d4e9f26982e285e0c9633</originalsourceid><addsrcrecordid>eNpNUV1vFCEUnRhNbGp_QV9IfJ6Vj4EB3zbjqk22tXHX9JEg3GnZjLACY-y_8CfLOk0jL5cc7jnnck_TXBK8IgSrd-th2Ox2K4qJWlHFFO_Fi-aMEqFaxpl4-d_9dXOR8wHXIyvE-7PmzxrdxF8woQ-mGHSbooWcfbhHe7APwf-cAY0xoc3vI6SCvkKOwYSCbkyI7a2fJpMy2icTspstpPwerdFgMqBdmd0jugaT53SS25SHSpmQD-jOFEjIBIfufAC0rSbeoWtTkq_mb5pXo5kyXDzV8-bbx81--Nxuv3y6Gtbb1nZYllZKAc72UijA38eRODZSZh3tlbWdIIAtYc4xJZiQrgM1UqEkBSp5faooO2-uFl0XzUEfk_9h0qOOxut_QEz32qTi7QSaONETjjmoznWYU4kpsJED7Y3sWG-r1ttF65hi3Vgu-hDnFOr4mnacC4q5ULWLLV02xZwTjM-uBOtTknpJUp-S1E9JVtblwvIA8MyQsv6UKPYX6DiZkQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455620569</pqid></control><display><type>article</type><title>A Novel Data Processing Technique for Expert Resonant Nano-Pillars Transducers: A Case Study Measuring Ethanol in Water and Wine Liquid Matrices</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Quintero, Sergio ; Marino, Rodrigo ; Lanza-Gutierrez, Jose M. ; Sanza, Francisco Javier ; Riesgo, Teresa ; Holgado, Miguel</creator><creatorcontrib>Quintero, Sergio ; Marino, Rodrigo ; Lanza-Gutierrez, Jose M. ; Sanza, Francisco Javier ; Riesgo, Teresa ; Holgado, Miguel</creatorcontrib><description>This paper proposes a novel readout methodology for improving the performance of Refractive Index (RI) based photonic transducers. Specifically, the authors focus on an optical transducer reported recently in the literature, the so-called Resonant Nano-Pillars (RNPs) transducer. The readout signal for this transducer is usually obtained based on the Wavelength Shift of the Resonant Mode (WSRM), which identifies a single point from the signal, such as the minimum of a resonant mode, whose wavelength shift or intensity value has a correlation with the RI of the media, and, therefore, with the monitored chemical component. This work proposes a novel spectral analysis through Principal Component Analysis (PCA), later inferring the property of interest by regression techniques. To evaluate the performance of the proposal, the authors mimic an agro-food experiment emulating a fermentation process as a proof of concept by measuring the ethanol concentration over time in two liquids: Deionized Water (DIW) and White Wine (WW). The authors compare both methods by inferring the ethanol concentration in the two experiments. As a result, the authors demonstrated experimentally that the proposal significantly outperformed the WSRM method, reporting an improvement of the Limit of Detection (LoD) of up to 140 times. Moreover, this PCA method can be also applied to many other biochemical sensing systems and transducers.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2939576</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Chemical and biological sensors ; chemical monitoring ; Data processing ; Deionization ; Ethanol ; expert sensors ; Fermentation ; machine learning ; optical resonators ; optical sensors ; Performance evaluation ; principal component analysis ; Principal components analysis ; Refractivity ; Regression analysis ; resonant nano-pillars ; Spectrum analysis ; Transducers</subject><ispartof>IEEE access, 2019, Vol.7, p.129778-129788</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-886edc7869e0bff1d3f23cd279cc461e0c13dd396368d4e9f26982e285e0c9633</citedby><cites>FETCH-LOGICAL-c408t-886edc7869e0bff1d3f23cd279cc461e0c13dd396368d4e9f26982e285e0c9633</cites><orcidid>0000-0002-8407-3666 ; 0000-0002-4545-7819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8827919$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Quintero, Sergio</creatorcontrib><creatorcontrib>Marino, Rodrigo</creatorcontrib><creatorcontrib>Lanza-Gutierrez, Jose M.</creatorcontrib><creatorcontrib>Sanza, Francisco Javier</creatorcontrib><creatorcontrib>Riesgo, Teresa</creatorcontrib><creatorcontrib>Holgado, Miguel</creatorcontrib><title>A Novel Data Processing Technique for Expert Resonant Nano-Pillars Transducers: A Case Study Measuring Ethanol in Water and Wine Liquid Matrices</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a novel readout methodology for improving the performance of Refractive Index (RI) based photonic transducers. Specifically, the authors focus on an optical transducer reported recently in the literature, the so-called Resonant Nano-Pillars (RNPs) transducer. The readout signal for this transducer is usually obtained based on the Wavelength Shift of the Resonant Mode (WSRM), which identifies a single point from the signal, such as the minimum of a resonant mode, whose wavelength shift or intensity value has a correlation with the RI of the media, and, therefore, with the monitored chemical component. This work proposes a novel spectral analysis through Principal Component Analysis (PCA), later inferring the property of interest by regression techniques. To evaluate the performance of the proposal, the authors mimic an agro-food experiment emulating a fermentation process as a proof of concept by measuring the ethanol concentration over time in two liquids: Deionized Water (DIW) and White Wine (WW). The authors compare both methods by inferring the ethanol concentration in the two experiments. As a result, the authors demonstrated experimentally that the proposal significantly outperformed the WSRM method, reporting an improvement of the Limit of Detection (LoD) of up to 140 times. Moreover, this PCA method can be also applied to many other biochemical sensing systems and transducers.</description><subject>Chemical and biological sensors</subject><subject>chemical monitoring</subject><subject>Data processing</subject><subject>Deionization</subject><subject>Ethanol</subject><subject>expert sensors</subject><subject>Fermentation</subject><subject>machine learning</subject><subject>optical resonators</subject><subject>optical sensors</subject><subject>Performance evaluation</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Refractivity</subject><subject>Regression analysis</subject><subject>resonant nano-pillars</subject><subject>Spectrum analysis</subject><subject>Transducers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1vFCEUnRhNbGp_QV9IfJ6Vj4EB3zbjqk22tXHX9JEg3GnZjLACY-y_8CfLOk0jL5cc7jnnck_TXBK8IgSrd-th2Ox2K4qJWlHFFO_Fi-aMEqFaxpl4-d_9dXOR8wHXIyvE-7PmzxrdxF8woQ-mGHSbooWcfbhHe7APwf-cAY0xoc3vI6SCvkKOwYSCbkyI7a2fJpMy2icTspstpPwerdFgMqBdmd0jugaT53SS25SHSpmQD-jOFEjIBIfufAC0rSbeoWtTkq_mb5pXo5kyXDzV8-bbx81--Nxuv3y6Gtbb1nZYllZKAc72UijA38eRODZSZh3tlbWdIIAtYc4xJZiQrgM1UqEkBSp5faooO2-uFl0XzUEfk_9h0qOOxut_QEz32qTi7QSaONETjjmoznWYU4kpsJED7Y3sWG-r1ttF65hi3Vgu-hDnFOr4mnacC4q5ULWLLV02xZwTjM-uBOtTknpJUp-S1E9JVtblwvIA8MyQsv6UKPYX6DiZkQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Quintero, Sergio</creator><creator>Marino, Rodrigo</creator><creator>Lanza-Gutierrez, Jose M.</creator><creator>Sanza, Francisco Javier</creator><creator>Riesgo, Teresa</creator><creator>Holgado, Miguel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8407-3666</orcidid><orcidid>https://orcid.org/0000-0002-4545-7819</orcidid></search><sort><creationdate>2019</creationdate><title>A Novel Data Processing Technique for Expert Resonant Nano-Pillars Transducers: A Case Study Measuring Ethanol in Water and Wine Liquid Matrices</title><author>Quintero, Sergio ; Marino, Rodrigo ; Lanza-Gutierrez, Jose M. ; Sanza, Francisco Javier ; Riesgo, Teresa ; Holgado, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-886edc7869e0bff1d3f23cd279cc461e0c13dd396368d4e9f26982e285e0c9633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical and biological sensors</topic><topic>chemical monitoring</topic><topic>Data processing</topic><topic>Deionization</topic><topic>Ethanol</topic><topic>expert sensors</topic><topic>Fermentation</topic><topic>machine learning</topic><topic>optical resonators</topic><topic>optical sensors</topic><topic>Performance evaluation</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Refractivity</topic><topic>Regression analysis</topic><topic>resonant nano-pillars</topic><topic>Spectrum analysis</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintero, Sergio</creatorcontrib><creatorcontrib>Marino, Rodrigo</creatorcontrib><creatorcontrib>Lanza-Gutierrez, Jose M.</creatorcontrib><creatorcontrib>Sanza, Francisco Javier</creatorcontrib><creatorcontrib>Riesgo, Teresa</creatorcontrib><creatorcontrib>Holgado, Miguel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintero, Sergio</au><au>Marino, Rodrigo</au><au>Lanza-Gutierrez, Jose M.</au><au>Sanza, Francisco Javier</au><au>Riesgo, Teresa</au><au>Holgado, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Data Processing Technique for Expert Resonant Nano-Pillars Transducers: A Case Study Measuring Ethanol in Water and Wine Liquid Matrices</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>129778</spage><epage>129788</epage><pages>129778-129788</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a novel readout methodology for improving the performance of Refractive Index (RI) based photonic transducers. Specifically, the authors focus on an optical transducer reported recently in the literature, the so-called Resonant Nano-Pillars (RNPs) transducer. The readout signal for this transducer is usually obtained based on the Wavelength Shift of the Resonant Mode (WSRM), which identifies a single point from the signal, such as the minimum of a resonant mode, whose wavelength shift or intensity value has a correlation with the RI of the media, and, therefore, with the monitored chemical component. This work proposes a novel spectral analysis through Principal Component Analysis (PCA), later inferring the property of interest by regression techniques. To evaluate the performance of the proposal, the authors mimic an agro-food experiment emulating a fermentation process as a proof of concept by measuring the ethanol concentration over time in two liquids: Deionized Water (DIW) and White Wine (WW). The authors compare both methods by inferring the ethanol concentration in the two experiments. As a result, the authors demonstrated experimentally that the proposal significantly outperformed the WSRM method, reporting an improvement of the Limit of Detection (LoD) of up to 140 times. Moreover, this PCA method can be also applied to many other biochemical sensing systems and transducers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2939576</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8407-3666</orcidid><orcidid>https://orcid.org/0000-0002-4545-7819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.129778-129788
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455620569
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Chemical and biological sensors
chemical monitoring
Data processing
Deionization
Ethanol
expert sensors
Fermentation
machine learning
optical resonators
optical sensors
Performance evaluation
principal component analysis
Principal components analysis
Refractivity
Regression analysis
resonant nano-pillars
Spectrum analysis
Transducers
title A Novel Data Processing Technique for Expert Resonant Nano-Pillars Transducers: A Case Study Measuring Ethanol in Water and Wine Liquid Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Data%20Processing%20Technique%20for%20Expert%20Resonant%20Nano-Pillars%20Transducers:%20A%20Case%20Study%20Measuring%20Ethanol%20in%20Water%20and%20Wine%20Liquid%20Matrices&rft.jtitle=IEEE%20access&rft.au=Quintero,%20Sergio&rft.date=2019&rft.volume=7&rft.spage=129778&rft.epage=129788&rft.pages=129778-129788&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2939576&rft_dat=%3Cproquest_doaj_%3E2455620569%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455620569&rft_id=info:pmid/&rft_ieee_id=8827919&rft_doaj_id=oai_doaj_org_article_1d671505e94d4052802e3f5e27a8437c&rfr_iscdi=true