A Lexical Resource-Constrained Topic Model for Word Relatedness
Word relatedness computation is an important supporting technology for many tasks in natural language processing. Traditionally, there have been two distinct strategies for word relatedness measurement: one utilizes corpus-based models, whereas the other leverages external lexical resources. However...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.55261-55268 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55268 |
---|---|
container_issue | |
container_start_page | 55261 |
container_title | IEEE access |
container_volume | 7 |
creator | Yin, Yongjing Zeng, Jiali Wang, Hongji Wu, Keqing Luo, Bin Su, Jinsong |
description | Word relatedness computation is an important supporting technology for many tasks in natural language processing. Traditionally, there have been two distinct strategies for word relatedness measurement: one utilizes corpus-based models, whereas the other leverages external lexical resources. However, either solution has its strengths and weaknesses. In this paper, we propose a lexical resource-constrained topic model to integrate the two complementary strategies effectively. Our model is an extension of probabilistic latent semantic analysis, which automatically learns word-level distributed representations forward relatedness measurement. Furthermore, we introduce generalized expectation maximization (GEM) algorithm for statistical estimation. The proposed model not merely inherit the advantage of conventional topic models in dimension reduction, but it also refines parameter estimation by using word pairs that are known to be related. The experimental results in different languages demonstrate the effectiveness of our model in topic extraction and word relatedness measurement. |
doi_str_mv | 10.1109/ACCESS.2019.2909104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455619333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8703742</ieee_id><doaj_id>oai_doaj_org_article_a6b50515027141f2b10cfd759827db40</doaj_id><sourcerecordid>2455619333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-72ac2c4f5beae71edbb42f762a81fe0c14fdfde7cf4cea0529f20c19a5cf13d93</originalsourceid><addsrcrecordid>eNpNUMFKAzEQDaJgqf2CXhY8b02yyWZzkrJULVQEW_EYsslEtqxNTbagf2_qluJcZni892bmITQleEYIlnfzul6s1zOKiZxRiSXB7AKNKCllXvCivPw3X6NJjFucqkoQFyN0P89W8N0a3WWvEP0hGMhrv4t90O0ObLbx-9Zkz95ClzkfsncfbGJ2uge7gxhv0JXTXYTJqY_R28NiUz_lq5fHZT1f5Ybhqs8F1YYa5ngDGgQB2zSMOlFSXREH2BDmrLMgjGMGNOZUOppQqblxpLCyGKPl4Gu93qp9aD91-FFet-oP8OFD6dC3pgOly4ZjTjimgjDiaEOwcVZwWVFhG4aT1-3gtQ_-6wCxV9v0-C6dryjjvCSySDVGxcAywccYwJ23EqyOwasheHUMXp2CT6rpoGoB4KyoBC4Eo8UvuCx-Bw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455619333</pqid></control><display><type>article</type><title>A Lexical Resource-Constrained Topic Model for Word Relatedness</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yin, Yongjing ; Zeng, Jiali ; Wang, Hongji ; Wu, Keqing ; Luo, Bin ; Su, Jinsong</creator><creatorcontrib>Yin, Yongjing ; Zeng, Jiali ; Wang, Hongji ; Wu, Keqing ; Luo, Bin ; Su, Jinsong</creatorcontrib><description>Word relatedness computation is an important supporting technology for many tasks in natural language processing. Traditionally, there have been two distinct strategies for word relatedness measurement: one utilizes corpus-based models, whereas the other leverages external lexical resources. However, either solution has its strengths and weaknesses. In this paper, we propose a lexical resource-constrained topic model to integrate the two complementary strategies effectively. Our model is an extension of probabilistic latent semantic analysis, which automatically learns word-level distributed representations forward relatedness measurement. Furthermore, we introduce generalized expectation maximization (GEM) algorithm for statistical estimation. The proposed model not merely inherit the advantage of conventional topic models in dimension reduction, but it also refines parameter estimation by using word pairs that are known to be related. The experimental results in different languages demonstrate the effectiveness of our model in topic extraction and word relatedness measurement.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2909104</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Computational modeling ; Linear programming ; Natural language processing ; Parameter estimation ; Semantics ; Statistical analysis ; Task analysis ; Training ; unsupervised learning ; Words (language)</subject><ispartof>IEEE access, 2019, Vol.7, p.55261-55268</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-72ac2c4f5beae71edbb42f762a81fe0c14fdfde7cf4cea0529f20c19a5cf13d93</citedby><cites>FETCH-LOGICAL-c408t-72ac2c4f5beae71edbb42f762a81fe0c14fdfde7cf4cea0529f20c19a5cf13d93</cites><orcidid>0000-0003-1138-4612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8703742$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yin, Yongjing</creatorcontrib><creatorcontrib>Zeng, Jiali</creatorcontrib><creatorcontrib>Wang, Hongji</creatorcontrib><creatorcontrib>Wu, Keqing</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Su, Jinsong</creatorcontrib><title>A Lexical Resource-Constrained Topic Model for Word Relatedness</title><title>IEEE access</title><addtitle>Access</addtitle><description>Word relatedness computation is an important supporting technology for many tasks in natural language processing. Traditionally, there have been two distinct strategies for word relatedness measurement: one utilizes corpus-based models, whereas the other leverages external lexical resources. However, either solution has its strengths and weaknesses. In this paper, we propose a lexical resource-constrained topic model to integrate the two complementary strategies effectively. Our model is an extension of probabilistic latent semantic analysis, which automatically learns word-level distributed representations forward relatedness measurement. Furthermore, we introduce generalized expectation maximization (GEM) algorithm for statistical estimation. The proposed model not merely inherit the advantage of conventional topic models in dimension reduction, but it also refines parameter estimation by using word pairs that are known to be related. The experimental results in different languages demonstrate the effectiveness of our model in topic extraction and word relatedness measurement.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Linear programming</subject><subject>Natural language processing</subject><subject>Parameter estimation</subject><subject>Semantics</subject><subject>Statistical analysis</subject><subject>Task analysis</subject><subject>Training</subject><subject>unsupervised learning</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFKAzEQDaJgqf2CXhY8b02yyWZzkrJULVQEW_EYsslEtqxNTbagf2_qluJcZni892bmITQleEYIlnfzul6s1zOKiZxRiSXB7AKNKCllXvCivPw3X6NJjFucqkoQFyN0P89W8N0a3WWvEP0hGMhrv4t90O0ObLbx-9Zkz95ClzkfsncfbGJ2uge7gxhv0JXTXYTJqY_R28NiUz_lq5fHZT1f5Ybhqs8F1YYa5ngDGgQB2zSMOlFSXREH2BDmrLMgjGMGNOZUOppQqblxpLCyGKPl4Gu93qp9aD91-FFet-oP8OFD6dC3pgOly4ZjTjimgjDiaEOwcVZwWVFhG4aT1-3gtQ_-6wCxV9v0-C6dryjjvCSySDVGxcAywccYwJ23EqyOwasheHUMXp2CT6rpoGoB4KyoBC4Eo8UvuCx-Bw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yin, Yongjing</creator><creator>Zeng, Jiali</creator><creator>Wang, Hongji</creator><creator>Wu, Keqing</creator><creator>Luo, Bin</creator><creator>Su, Jinsong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1138-4612</orcidid></search><sort><creationdate>2019</creationdate><title>A Lexical Resource-Constrained Topic Model for Word Relatedness</title><author>Yin, Yongjing ; Zeng, Jiali ; Wang, Hongji ; Wu, Keqing ; Luo, Bin ; Su, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-72ac2c4f5beae71edbb42f762a81fe0c14fdfde7cf4cea0529f20c19a5cf13d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Linear programming</topic><topic>Natural language processing</topic><topic>Parameter estimation</topic><topic>Semantics</topic><topic>Statistical analysis</topic><topic>Task analysis</topic><topic>Training</topic><topic>unsupervised learning</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Yongjing</creatorcontrib><creatorcontrib>Zeng, Jiali</creatorcontrib><creatorcontrib>Wang, Hongji</creatorcontrib><creatorcontrib>Wu, Keqing</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Su, Jinsong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Yongjing</au><au>Zeng, Jiali</au><au>Wang, Hongji</au><au>Wu, Keqing</au><au>Luo, Bin</au><au>Su, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lexical Resource-Constrained Topic Model for Word Relatedness</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>55261</spage><epage>55268</epage><pages>55261-55268</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Word relatedness computation is an important supporting technology for many tasks in natural language processing. Traditionally, there have been two distinct strategies for word relatedness measurement: one utilizes corpus-based models, whereas the other leverages external lexical resources. However, either solution has its strengths and weaknesses. In this paper, we propose a lexical resource-constrained topic model to integrate the two complementary strategies effectively. Our model is an extension of probabilistic latent semantic analysis, which automatically learns word-level distributed representations forward relatedness measurement. Furthermore, we introduce generalized expectation maximization (GEM) algorithm for statistical estimation. The proposed model not merely inherit the advantage of conventional topic models in dimension reduction, but it also refines parameter estimation by using word pairs that are known to be related. The experimental results in different languages demonstrate the effectiveness of our model in topic extraction and word relatedness measurement.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2909104</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1138-4612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.55261-55268 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455619333 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Analytical models Computational modeling Linear programming Natural language processing Parameter estimation Semantics Statistical analysis Task analysis Training unsupervised learning Words (language) |
title | A Lexical Resource-Constrained Topic Model for Word Relatedness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lexical%20Resource-Constrained%20Topic%20Model%20for%20Word%20Relatedness&rft.jtitle=IEEE%20access&rft.au=Yin,%20Yongjing&rft.date=2019&rft.volume=7&rft.spage=55261&rft.epage=55268&rft.pages=55261-55268&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2909104&rft_dat=%3Cproquest_ieee_%3E2455619333%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455619333&rft_id=info:pmid/&rft_ieee_id=8703742&rft_doaj_id=oai_doaj_org_article_a6b50515027141f2b10cfd759827db40&rfr_iscdi=true |