Finite-Difference Time-Domain Modeling for Electromagnetic Wave Analysis of Human Voxel Model at Millimeter-Wave Frequencies

The finite-difference time-domain (FDTD) modeling of a human voxel model at millimeter-wave (mmWave) frequencies is presented. It is very important to develop the proper geometrical and electrical modeling of a human voxel model suitable for accurate electromagnetic (EM) analysis. Although there are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.3635-3643
Hauptverfasser: Baek, Jae-Woo, Kim, Dong-Kyoo, Jung, Kyung-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3643
container_issue
container_start_page 3635
container_title IEEE access
container_volume 7
creator Baek, Jae-Woo
Kim, Dong-Kyoo
Jung, Kyung-Young
description The finite-difference time-domain (FDTD) modeling of a human voxel model at millimeter-wave (mmWave) frequencies is presented. It is very important to develop the proper geometrical and electrical modeling of a human voxel model suitable for accurate electromagnetic (EM) analysis. Although there are many human phantom models available, their voxel resolution is too poor to use for the FDTD study of EM wave interaction with human tissues. In this paper, we develop a proper human voxel model suitable for mmWave FDTD analysis using the voxel resolution enhancement technique and the image smoothing technique. The former can improve the resolution of the human voxel model and the latter can alleviate staircasing boundaries of the human voxel model. Quadratic complex rational function is employed for the electrical modeling of human tissues in the frequency range of 6-100 GHz. Massage passing interface-based parallel processing is also applied to dramatically speed up FDTD calculations. Numerical examples are used to illustrate the validity of the mmWave FDTD simulator developed here for bio electromagnetics studies.
doi_str_mv 10.1109/ACCESS.2018.2888584
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455615241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8581409</ieee_id><doaj_id>oai_doaj_org_article_a3aa2ae741cf447ba0df7cdd0bd0deb9</doaj_id><sourcerecordid>2455615241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a2f4538b99062eca4a13454a4c59930a1f4eac90fc3973c283fa7a704f2ab4a03</originalsourceid><addsrcrecordid>eNpNkU1P4zAQhiPESiDgF3CxtOcUfzb2seq2WyQQB1g4WhNnXLlKY9ZOV4vEj8cQhPDFno_nHY3fqrpkdMYYNVeL5XJ1fz_jlOkZ11orLY-qU87mphZKzI-_vU-qi5x3tBxdUqo5rV7XYQgj1r-C95hwcEgewr7EcQ9hILexwz4MW-JjIqse3ZhKYTvgGBx5gn9IFgP0LzlkEj3ZHPYwkMf4H_uJJDCS29D3RXHEVH8A64R_D2VQwHxe_fDQZ7z4vM-qP-vVw3JT39z9vl4ubmonqR5r4F4qoVtj6JyjAwlMSCVBOmWMoMC8RHCGeidMIxzXwkMDDZWeQyuBirPqetLtIuzscwp7SC82QrAfiZi2FlLZqEcLAoADNpI5L2XTAu1847qOth3tsDVF6-ek9Zxi2SOPdhcPqXxCtlwqNWeKS1a6xNTlUsw5of-ayqh9d81Ortl31-yna4W6nKiAiF9EKTFJjXgDa3aU6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455615241</pqid></control><display><type>article</type><title>Finite-Difference Time-Domain Modeling for Electromagnetic Wave Analysis of Human Voxel Model at Millimeter-Wave Frequencies</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baek, Jae-Woo ; Kim, Dong-Kyoo ; Jung, Kyung-Young</creator><creatorcontrib>Baek, Jae-Woo ; Kim, Dong-Kyoo ; Jung, Kyung-Young</creatorcontrib><description>The finite-difference time-domain (FDTD) modeling of a human voxel model at millimeter-wave (mmWave) frequencies is presented. It is very important to develop the proper geometrical and electrical modeling of a human voxel model suitable for accurate electromagnetic (EM) analysis. Although there are many human phantom models available, their voxel resolution is too poor to use for the FDTD study of EM wave interaction with human tissues. In this paper, we develop a proper human voxel model suitable for mmWave FDTD analysis using the voxel resolution enhancement technique and the image smoothing technique. The former can improve the resolution of the human voxel model and the latter can alleviate staircasing boundaries of the human voxel model. Quadratic complex rational function is employed for the electrical modeling of human tissues in the frequency range of 6-100 GHz. Massage passing interface-based parallel processing is also applied to dramatically speed up FDTD calculations. Numerical examples are used to illustrate the validity of the mmWave FDTD simulator developed here for bio electromagnetics studies.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2888584</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; bioelectromagnetics ; Computational modeling ; dispersion model ; Doppler radar ; Electromagnetic radiation ; electromagnetic wave ; Finite difference methods ; Finite difference time domain method ; Finite-difference time-domain (FDTD) method ; Frequency ranges ; human tissue ; Human tissues ; Image enhancement ; Image resolution ; Mathematical analysis ; Millimeter waves ; Numerical models ; Parallel processing ; Phantoms ; Rational functions ; Time-domain analysis ; Wave interaction</subject><ispartof>IEEE access, 2019, Vol.7, p.3635-3643</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a2f4538b99062eca4a13454a4c59930a1f4eac90fc3973c283fa7a704f2ab4a03</citedby><cites>FETCH-LOGICAL-c408t-a2f4538b99062eca4a13454a4c59930a1f4eac90fc3973c283fa7a704f2ab4a03</cites><orcidid>0000-0002-7960-3650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8581409$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Baek, Jae-Woo</creatorcontrib><creatorcontrib>Kim, Dong-Kyoo</creatorcontrib><creatorcontrib>Jung, Kyung-Young</creatorcontrib><title>Finite-Difference Time-Domain Modeling for Electromagnetic Wave Analysis of Human Voxel Model at Millimeter-Wave Frequencies</title><title>IEEE access</title><addtitle>Access</addtitle><description>The finite-difference time-domain (FDTD) modeling of a human voxel model at millimeter-wave (mmWave) frequencies is presented. It is very important to develop the proper geometrical and electrical modeling of a human voxel model suitable for accurate electromagnetic (EM) analysis. Although there are many human phantom models available, their voxel resolution is too poor to use for the FDTD study of EM wave interaction with human tissues. In this paper, we develop a proper human voxel model suitable for mmWave FDTD analysis using the voxel resolution enhancement technique and the image smoothing technique. The former can improve the resolution of the human voxel model and the latter can alleviate staircasing boundaries of the human voxel model. Quadratic complex rational function is employed for the electrical modeling of human tissues in the frequency range of 6-100 GHz. Massage passing interface-based parallel processing is also applied to dramatically speed up FDTD calculations. Numerical examples are used to illustrate the validity of the mmWave FDTD simulator developed here for bio electromagnetics studies.</description><subject>Analytical models</subject><subject>bioelectromagnetics</subject><subject>Computational modeling</subject><subject>dispersion model</subject><subject>Doppler radar</subject><subject>Electromagnetic radiation</subject><subject>electromagnetic wave</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Finite-difference time-domain (FDTD) method</subject><subject>Frequency ranges</subject><subject>human tissue</subject><subject>Human tissues</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Mathematical analysis</subject><subject>Millimeter waves</subject><subject>Numerical models</subject><subject>Parallel processing</subject><subject>Phantoms</subject><subject>Rational functions</subject><subject>Time-domain analysis</subject><subject>Wave interaction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1P4zAQhiPESiDgF3CxtOcUfzb2seq2WyQQB1g4WhNnXLlKY9ZOV4vEj8cQhPDFno_nHY3fqrpkdMYYNVeL5XJ1fz_jlOkZ11orLY-qU87mphZKzI-_vU-qi5x3tBxdUqo5rV7XYQgj1r-C95hwcEgewr7EcQ9hILexwz4MW-JjIqse3ZhKYTvgGBx5gn9IFgP0LzlkEj3ZHPYwkMf4H_uJJDCS29D3RXHEVH8A64R_D2VQwHxe_fDQZ7z4vM-qP-vVw3JT39z9vl4ubmonqR5r4F4qoVtj6JyjAwlMSCVBOmWMoMC8RHCGeidMIxzXwkMDDZWeQyuBirPqetLtIuzscwp7SC82QrAfiZi2FlLZqEcLAoADNpI5L2XTAu1847qOth3tsDVF6-ek9Zxi2SOPdhcPqXxCtlwqNWeKS1a6xNTlUsw5of-ayqh9d81Ortl31-yna4W6nKiAiF9EKTFJjXgDa3aU6Q</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Baek, Jae-Woo</creator><creator>Kim, Dong-Kyoo</creator><creator>Jung, Kyung-Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7960-3650</orcidid></search><sort><creationdate>2019</creationdate><title>Finite-Difference Time-Domain Modeling for Electromagnetic Wave Analysis of Human Voxel Model at Millimeter-Wave Frequencies</title><author>Baek, Jae-Woo ; Kim, Dong-Kyoo ; Jung, Kyung-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a2f4538b99062eca4a13454a4c59930a1f4eac90fc3973c283fa7a704f2ab4a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical models</topic><topic>bioelectromagnetics</topic><topic>Computational modeling</topic><topic>dispersion model</topic><topic>Doppler radar</topic><topic>Electromagnetic radiation</topic><topic>electromagnetic wave</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Finite-difference time-domain (FDTD) method</topic><topic>Frequency ranges</topic><topic>human tissue</topic><topic>Human tissues</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Mathematical analysis</topic><topic>Millimeter waves</topic><topic>Numerical models</topic><topic>Parallel processing</topic><topic>Phantoms</topic><topic>Rational functions</topic><topic>Time-domain analysis</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Jae-Woo</creatorcontrib><creatorcontrib>Kim, Dong-Kyoo</creatorcontrib><creatorcontrib>Jung, Kyung-Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Jae-Woo</au><au>Kim, Dong-Kyoo</au><au>Jung, Kyung-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Difference Time-Domain Modeling for Electromagnetic Wave Analysis of Human Voxel Model at Millimeter-Wave Frequencies</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>3635</spage><epage>3643</epage><pages>3635-3643</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The finite-difference time-domain (FDTD) modeling of a human voxel model at millimeter-wave (mmWave) frequencies is presented. It is very important to develop the proper geometrical and electrical modeling of a human voxel model suitable for accurate electromagnetic (EM) analysis. Although there are many human phantom models available, their voxel resolution is too poor to use for the FDTD study of EM wave interaction with human tissues. In this paper, we develop a proper human voxel model suitable for mmWave FDTD analysis using the voxel resolution enhancement technique and the image smoothing technique. The former can improve the resolution of the human voxel model and the latter can alleviate staircasing boundaries of the human voxel model. Quadratic complex rational function is employed for the electrical modeling of human tissues in the frequency range of 6-100 GHz. Massage passing interface-based parallel processing is also applied to dramatically speed up FDTD calculations. Numerical examples are used to illustrate the validity of the mmWave FDTD simulator developed here for bio electromagnetics studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2888584</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7960-3650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.3635-3643
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455615241
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytical models
bioelectromagnetics
Computational modeling
dispersion model
Doppler radar
Electromagnetic radiation
electromagnetic wave
Finite difference methods
Finite difference time domain method
Finite-difference time-domain (FDTD) method
Frequency ranges
human tissue
Human tissues
Image enhancement
Image resolution
Mathematical analysis
Millimeter waves
Numerical models
Parallel processing
Phantoms
Rational functions
Time-domain analysis
Wave interaction
title Finite-Difference Time-Domain Modeling for Electromagnetic Wave Analysis of Human Voxel Model at Millimeter-Wave Frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Difference%20Time-Domain%20Modeling%20for%20Electromagnetic%20Wave%20Analysis%20of%20Human%20Voxel%20Model%20at%20Millimeter-Wave%20Frequencies&rft.jtitle=IEEE%20access&rft.au=Baek,%20Jae-Woo&rft.date=2019&rft.volume=7&rft.spage=3635&rft.epage=3643&rft.pages=3635-3643&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2888584&rft_dat=%3Cproquest_cross%3E2455615241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455615241&rft_id=info:pmid/&rft_ieee_id=8581409&rft_doaj_id=oai_doaj_org_article_a3aa2ae741cf447ba0df7cdd0bd0deb9&rfr_iscdi=true