Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking
This paper aims to examine how the trajectory dimension influences sensorimotor control during arm tracking. We designed three trajectories with different dimensions in a three-dimensional (3D) immersive virtual reality environment and instructed the subjects to control a virtual hand to follow a cu...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.8890-8900 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8900 |
---|---|
container_issue | |
container_start_page | 8890 |
container_title | IEEE access |
container_volume | 7 |
creator | Fan, Mengying Luo, Jie Li, Le Huang, Dong Feng Zhan, Yinwei Song, Rong |
description | This paper aims to examine how the trajectory dimension influences sensorimotor control during arm tracking. We designed three trajectories with different dimensions in a three-dimensional (3D) immersive virtual reality environment and instructed the subjects to control a virtual hand to follow a cubic target that moved along the designed trajectories. The position of the virtual hand was determined by the position of the actual hand captured with a high-resolution 3D motion capture system in real time. Five kinematic measures were calculated: the root mean square error (RMSE), the standard deviation of the speed (speed sd ), the magnitude of the jerk (Jerk m ), the integral of the speed power spectrum (IVPS), and the 3D fuzzy approximate entropy (fApEn 3D ). All the kinematic measures increased significantly with increasing trajectory dimensions, except for the IVPS between the 1D and 2D conditions and the fApEn 3D between the 2D and 3D conditions. The increase in time-domain parameters (i.e., RMSE, speed sd , and Jerk m ) showed degradation in accuracy, energy efficiency, and multijoint coordination, respectively, in the higher dimensions. An increase in the frequency-domain measure (i.e., IVPS) in higher dimensional condition reflected an increase of visual feedback-related intermittency in manual control when increasing the trajectory dimension. The larger nonlinear fApEn 3D values in the 2D and 3D conditions might have been due to the higher level neuromotor noise and increased sensory inputs. The selected parameters could provide a comprehensive method for evaluating motor performance from different perspectives. The findings in this paper shed light on the underlying sensorimotor control that is caused by the trajectory dimension in arm tracking tasks. |
doi_str_mv | 10.1109/ACCESS.2019.2891132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455614076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8605306</ieee_id><doaj_id>oai_doaj_org_article_e3699ce24ad74e55bdf546a4d869b78e</doaj_id><sourcerecordid>2455614076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b9530e4a1fd94a56b4a244c2113fb66cf4f7fc99ee3d9b070840d3e50fa6a6a93</originalsourceid><addsrcrecordid>eNpNUU9PwyAcbYwmGt0n2KWJ504of1qOSzd1cYmHzYMnQumPhbrBhHrYt5dZY4QD5OW99-PxsmyK0QxjJB7mTbPcbGYlwmJW1gJjUl5kNyXmoiCM8Mt_9-tsEmOP0qoTxKqb7P3FOjiowep87tT-FG3Mvcm3QfWgBx9O-cIewEXrXbGAI7gO3JBvEuKDPfjEyBvvhuD3uXX5PBzOUv1h3e4uuzJqH2Hye95mb4_LbfNcrF-fVs18XWiK6qFoBSMIqMKmE1Qx3lJVUqrLFMO0nGtDTWW0EACkEy2qUE1RR4Aho3jagtxmq9G386qXx_QqFU7SKyt_AB92UoWUbw8SCBdCQ0lVV1FgrO0Mo1zRruairWpIXvej1zH4zy-Ig-z9V0j_EmVJGeOYooonFhlZOvgYA5i_qRjJcyVyrESeK5G_lSTVdFRZAPhT1Byl_Jx8A9opiCk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455614076</pqid></control><display><type>article</type><title>Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fan, Mengying ; Luo, Jie ; Li, Le ; Huang, Dong Feng ; Zhan, Yinwei ; Song, Rong</creator><creatorcontrib>Fan, Mengying ; Luo, Jie ; Li, Le ; Huang, Dong Feng ; Zhan, Yinwei ; Song, Rong</creatorcontrib><description>This paper aims to examine how the trajectory dimension influences sensorimotor control during arm tracking. We designed three trajectories with different dimensions in a three-dimensional (3D) immersive virtual reality environment and instructed the subjects to control a virtual hand to follow a cubic target that moved along the designed trajectories. The position of the virtual hand was determined by the position of the actual hand captured with a high-resolution 3D motion capture system in real time. Five kinematic measures were calculated: the root mean square error (RMSE), the standard deviation of the speed (speed sd ), the magnitude of the jerk (Jerk m ), the integral of the speed power spectrum (IVPS), and the 3D fuzzy approximate entropy (fApEn 3D ). All the kinematic measures increased significantly with increasing trajectory dimensions, except for the IVPS between the 1D and 2D conditions and the fApEn 3D between the 2D and 3D conditions. The increase in time-domain parameters (i.e., RMSE, speed sd , and Jerk m ) showed degradation in accuracy, energy efficiency, and multijoint coordination, respectively, in the higher dimensions. An increase in the frequency-domain measure (i.e., IVPS) in higher dimensional condition reflected an increase of visual feedback-related intermittency in manual control when increasing the trajectory dimension. The larger nonlinear fApEn 3D values in the 2D and 3D conditions might have been due to the higher level neuromotor noise and increased sensory inputs. The selected parameters could provide a comprehensive method for evaluating motor performance from different perspectives. The findings in this paper shed light on the underlying sensorimotor control that is caused by the trajectory dimension in arm tracking tasks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2891132</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>entropy ; Immersive virtual reality ; Kinematics ; Manual control ; motion analysis ; Motion capture ; Neural engineering ; Parameters ; Root-mean-square errors ; Target tracking ; Task analysis ; Three dimensional motion ; Three-dimensional displays ; Time measurement ; Tracking control ; Trajectory ; Trajectory analysis ; Trajectory control ; Two dimensional displays ; virtual reality</subject><ispartof>IEEE access, 2019, Vol.7, p.8890-8900</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b9530e4a1fd94a56b4a244c2113fb66cf4f7fc99ee3d9b070840d3e50fa6a6a93</citedby><cites>FETCH-LOGICAL-c408t-b9530e4a1fd94a56b4a244c2113fb66cf4f7fc99ee3d9b070840d3e50fa6a6a93</cites><orcidid>0000-0003-3662-116X ; 0000-0003-4336-2063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8605306$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Fan, Mengying</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><creatorcontrib>Li, Le</creatorcontrib><creatorcontrib>Huang, Dong Feng</creatorcontrib><creatorcontrib>Zhan, Yinwei</creatorcontrib><creatorcontrib>Song, Rong</creatorcontrib><title>Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper aims to examine how the trajectory dimension influences sensorimotor control during arm tracking. We designed three trajectories with different dimensions in a three-dimensional (3D) immersive virtual reality environment and instructed the subjects to control a virtual hand to follow a cubic target that moved along the designed trajectories. The position of the virtual hand was determined by the position of the actual hand captured with a high-resolution 3D motion capture system in real time. Five kinematic measures were calculated: the root mean square error (RMSE), the standard deviation of the speed (speed sd ), the magnitude of the jerk (Jerk m ), the integral of the speed power spectrum (IVPS), and the 3D fuzzy approximate entropy (fApEn 3D ). All the kinematic measures increased significantly with increasing trajectory dimensions, except for the IVPS between the 1D and 2D conditions and the fApEn 3D between the 2D and 3D conditions. The increase in time-domain parameters (i.e., RMSE, speed sd , and Jerk m ) showed degradation in accuracy, energy efficiency, and multijoint coordination, respectively, in the higher dimensions. An increase in the frequency-domain measure (i.e., IVPS) in higher dimensional condition reflected an increase of visual feedback-related intermittency in manual control when increasing the trajectory dimension. The larger nonlinear fApEn 3D values in the 2D and 3D conditions might have been due to the higher level neuromotor noise and increased sensory inputs. The selected parameters could provide a comprehensive method for evaluating motor performance from different perspectives. The findings in this paper shed light on the underlying sensorimotor control that is caused by the trajectory dimension in arm tracking tasks.</description><subject>entropy</subject><subject>Immersive virtual reality</subject><subject>Kinematics</subject><subject>Manual control</subject><subject>motion analysis</subject><subject>Motion capture</subject><subject>Neural engineering</subject><subject>Parameters</subject><subject>Root-mean-square errors</subject><subject>Target tracking</subject><subject>Task analysis</subject><subject>Three dimensional motion</subject><subject>Three-dimensional displays</subject><subject>Time measurement</subject><subject>Tracking control</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Trajectory control</subject><subject>Two dimensional displays</subject><subject>virtual reality</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU9PwyAcbYwmGt0n2KWJ504of1qOSzd1cYmHzYMnQumPhbrBhHrYt5dZY4QD5OW99-PxsmyK0QxjJB7mTbPcbGYlwmJW1gJjUl5kNyXmoiCM8Mt_9-tsEmOP0qoTxKqb7P3FOjiowep87tT-FG3Mvcm3QfWgBx9O-cIewEXrXbGAI7gO3JBvEuKDPfjEyBvvhuD3uXX5PBzOUv1h3e4uuzJqH2Hye95mb4_LbfNcrF-fVs18XWiK6qFoBSMIqMKmE1Qx3lJVUqrLFMO0nGtDTWW0EACkEy2qUE1RR4Aho3jagtxmq9G386qXx_QqFU7SKyt_AB92UoWUbw8SCBdCQ0lVV1FgrO0Mo1zRruairWpIXvej1zH4zy-Ig-z9V0j_EmVJGeOYooonFhlZOvgYA5i_qRjJcyVyrESeK5G_lSTVdFRZAPhT1Byl_Jx8A9opiCk</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Fan, Mengying</creator><creator>Luo, Jie</creator><creator>Li, Le</creator><creator>Huang, Dong Feng</creator><creator>Zhan, Yinwei</creator><creator>Song, Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3662-116X</orcidid><orcidid>https://orcid.org/0000-0003-4336-2063</orcidid></search><sort><creationdate>2019</creationdate><title>Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking</title><author>Fan, Mengying ; Luo, Jie ; Li, Le ; Huang, Dong Feng ; Zhan, Yinwei ; Song, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b9530e4a1fd94a56b4a244c2113fb66cf4f7fc99ee3d9b070840d3e50fa6a6a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>entropy</topic><topic>Immersive virtual reality</topic><topic>Kinematics</topic><topic>Manual control</topic><topic>motion analysis</topic><topic>Motion capture</topic><topic>Neural engineering</topic><topic>Parameters</topic><topic>Root-mean-square errors</topic><topic>Target tracking</topic><topic>Task analysis</topic><topic>Three dimensional motion</topic><topic>Three-dimensional displays</topic><topic>Time measurement</topic><topic>Tracking control</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Trajectory control</topic><topic>Two dimensional displays</topic><topic>virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Mengying</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><creatorcontrib>Li, Le</creatorcontrib><creatorcontrib>Huang, Dong Feng</creatorcontrib><creatorcontrib>Zhan, Yinwei</creatorcontrib><creatorcontrib>Song, Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Mengying</au><au>Luo, Jie</au><au>Li, Le</au><au>Huang, Dong Feng</au><au>Zhan, Yinwei</au><au>Song, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>8890</spage><epage>8900</epage><pages>8890-8900</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper aims to examine how the trajectory dimension influences sensorimotor control during arm tracking. We designed three trajectories with different dimensions in a three-dimensional (3D) immersive virtual reality environment and instructed the subjects to control a virtual hand to follow a cubic target that moved along the designed trajectories. The position of the virtual hand was determined by the position of the actual hand captured with a high-resolution 3D motion capture system in real time. Five kinematic measures were calculated: the root mean square error (RMSE), the standard deviation of the speed (speed sd ), the magnitude of the jerk (Jerk m ), the integral of the speed power spectrum (IVPS), and the 3D fuzzy approximate entropy (fApEn 3D ). All the kinematic measures increased significantly with increasing trajectory dimensions, except for the IVPS between the 1D and 2D conditions and the fApEn 3D between the 2D and 3D conditions. The increase in time-domain parameters (i.e., RMSE, speed sd , and Jerk m ) showed degradation in accuracy, energy efficiency, and multijoint coordination, respectively, in the higher dimensions. An increase in the frequency-domain measure (i.e., IVPS) in higher dimensional condition reflected an increase of visual feedback-related intermittency in manual control when increasing the trajectory dimension. The larger nonlinear fApEn 3D values in the 2D and 3D conditions might have been due to the higher level neuromotor noise and increased sensory inputs. The selected parameters could provide a comprehensive method for evaluating motor performance from different perspectives. The findings in this paper shed light on the underlying sensorimotor control that is caused by the trajectory dimension in arm tracking tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2891132</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3662-116X</orcidid><orcidid>https://orcid.org/0000-0003-4336-2063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.8890-8900 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455614076 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | entropy Immersive virtual reality Kinematics Manual control motion analysis Motion capture Neural engineering Parameters Root-mean-square errors Target tracking Task analysis Three dimensional motion Three-dimensional displays Time measurement Tracking control Trajectory Trajectory analysis Trajectory control Two dimensional displays virtual reality |
title | Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinematic%20Analysis%20of%20Trajectory%20Dimension-Dependent%20Sensorimotor%20Control%20in%20Arm%20Tracking&rft.jtitle=IEEE%20access&rft.au=Fan,%20Mengying&rft.date=2019&rft.volume=7&rft.spage=8890&rft.epage=8900&rft.pages=8890-8900&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2891132&rft_dat=%3Cproquest_ieee_%3E2455614076%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455614076&rft_id=info:pmid/&rft_ieee_id=8605306&rft_doaj_id=oai_doaj_org_article_e3699ce24ad74e55bdf546a4d869b78e&rfr_iscdi=true |