EEG Processing in Internet of Medical Things Using Non-Harmonic Analysis: Application and Evolution for SSVEP Responses

In recent years, the Internet of Things has been applied in many fields with rapid development, such as software, sensors, and medical and healthcare. In the case of medical and healthcare, extensive research has focused on the development of brain-computer interface systems, particularly those util...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.11318-11327
Hauptverfasser: Jia, Dongbao, Dai, Hongwei, Takashima, Yuta, Nishio, Takuro, Hirobayashi, Kanna, Hasegawa, Masaya, Hirobayashi, Shigeki, Misawa, Tadanobu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11327
container_issue
container_start_page 11318
container_title IEEE access
container_volume 7
creator Jia, Dongbao
Dai, Hongwei
Takashima, Yuta
Nishio, Takuro
Hirobayashi, Kanna
Hasegawa, Masaya
Hirobayashi, Shigeki
Misawa, Tadanobu
description In recent years, the Internet of Things has been applied in many fields with rapid development, such as software, sensors, and medical and healthcare. In the case of medical and healthcare, extensive research has focused on the development of brain-computer interface systems, particularly those utilizing steady-state visual-evoked potentials (SSVEPs). However, the conventional short-time Fourier transform (STFT) analysis is associated with the low-frequency resolution because of the length of the analysis window, resulting in sidelobe artifacts. In this paper, we utilized the non-harmonic analysis (NHA), which does not depend on the length of the analysis window, to analyze the continuous changes in and determine the classification accuracy of SSVEPs. Moreover, our experiments utilized the gray-scale images, allowing for the presentation of the stimulus as a sinusoidal pattern and reducing the effect of frequency distortion associated with the refresh rate of the liquid-crystal display. Our findings indicated that NHA resulted in exponential improvements in time-frequency resolution when compared with the STFT analysis. As the accuracy of NHA was high, our results suggest that this method is effective for examining SSVEPs and changes in brain waves during experiments conducted using liquid-crystal displays.
doi_str_mv 10.1109/ACCESS.2019.2892188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455612154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8610084</ieee_id><doaj_id>oai_doaj_org_article_1a36578c3b4342cd8e10b3e8e6e9676b</doaj_id><sourcerecordid>2455612154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d5dcc81bcd6c49252737d31fb99a13abdf2424dd6697a7e5b4c9ff3ed68897463</originalsourceid><addsrcrecordid>eNpNkU9P3DAQxSPUSkWUT8DFEuds47-xe1utUlgJWtSFXi3HnlCvgp3a2VZ8e8wGofoynpn3nmX9quoCNyuMG_Vlvdl0u92KNFitiFQES3lSnRIsVE05FR_-u3-qznPeN-XIMuLtafWv667QXYoWcvbhEfmAtmGGFGBGcUC34Lw1I7r_XZYZPRw132Oor016isFbtA5mfM4-f0XraRqLePYxIBMc6v7G8XDshpjQbveru0M_IU8xZMifq4-DGTOcv9Wz6uFbd7-5rm9-XG0365vaspbNtePOWol764RlinDS0tZRPPRKGUxN7wbCCHNOCNWaFnjPrBoGCk5IqVom6Fm1XXJdNHs9Jf9k0rOOxuvjIKZHbdLs7QgaGyp4Ky3tGWXEOgm46SlIEKBEK_qSdblkTSn-OUCe9T4eUvl_1oRxLjDBnBUVXVQ2xZwTDO-v4ka_AtMLMP0KTL8BK66LxeUB4N0hBS6oGH0B16KRfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455612154</pqid></control><display><type>article</type><title>EEG Processing in Internet of Medical Things Using Non-Harmonic Analysis: Application and Evolution for SSVEP Responses</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jia, Dongbao ; Dai, Hongwei ; Takashima, Yuta ; Nishio, Takuro ; Hirobayashi, Kanna ; Hasegawa, Masaya ; Hirobayashi, Shigeki ; Misawa, Tadanobu</creator><creatorcontrib>Jia, Dongbao ; Dai, Hongwei ; Takashima, Yuta ; Nishio, Takuro ; Hirobayashi, Kanna ; Hasegawa, Masaya ; Hirobayashi, Shigeki ; Misawa, Tadanobu</creatorcontrib><description>In recent years, the Internet of Things has been applied in many fields with rapid development, such as software, sensors, and medical and healthcare. In the case of medical and healthcare, extensive research has focused on the development of brain-computer interface systems, particularly those utilizing steady-state visual-evoked potentials (SSVEPs). However, the conventional short-time Fourier transform (STFT) analysis is associated with the low-frequency resolution because of the length of the analysis window, resulting in sidelobe artifacts. In this paper, we utilized the non-harmonic analysis (NHA), which does not depend on the length of the analysis window, to analyze the continuous changes in and determine the classification accuracy of SSVEPs. Moreover, our experiments utilized the gray-scale images, allowing for the presentation of the stimulus as a sinusoidal pattern and reducing the effect of frequency distortion associated with the refresh rate of the liquid-crystal display. Our findings indicated that NHA resulted in exponential improvements in time-frequency resolution when compared with the STFT analysis. As the accuracy of NHA was high, our results suggest that this method is effective for examining SSVEPs and changes in brain waves during experiments conducted using liquid-crystal displays.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2892188</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; Brain computer interface ; Chirp ; chirp stimulus ; Distortion ; Fourier analysis ; Fourier transforms ; grayscale images ; Harmonic analysis ; Health care ; Human-computer interface ; Image classification ; Internet of medical things ; Liquid crystal displays ; Medical research ; Microsoft Windows ; non-harmonic analysis ; Sidelobes ; steady-state visual evoked potential ; Time-frequency analysis ; Visualization</subject><ispartof>IEEE access, 2019, Vol.7, p.11318-11327</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d5dcc81bcd6c49252737d31fb99a13abdf2424dd6697a7e5b4c9ff3ed68897463</citedby><orcidid>0000-0001-7007-4134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8610084$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jia, Dongbao</creatorcontrib><creatorcontrib>Dai, Hongwei</creatorcontrib><creatorcontrib>Takashima, Yuta</creatorcontrib><creatorcontrib>Nishio, Takuro</creatorcontrib><creatorcontrib>Hirobayashi, Kanna</creatorcontrib><creatorcontrib>Hasegawa, Masaya</creatorcontrib><creatorcontrib>Hirobayashi, Shigeki</creatorcontrib><creatorcontrib>Misawa, Tadanobu</creatorcontrib><title>EEG Processing in Internet of Medical Things Using Non-Harmonic Analysis: Application and Evolution for SSVEP Responses</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, the Internet of Things has been applied in many fields with rapid development, such as software, sensors, and medical and healthcare. In the case of medical and healthcare, extensive research has focused on the development of brain-computer interface systems, particularly those utilizing steady-state visual-evoked potentials (SSVEPs). However, the conventional short-time Fourier transform (STFT) analysis is associated with the low-frequency resolution because of the length of the analysis window, resulting in sidelobe artifacts. In this paper, we utilized the non-harmonic analysis (NHA), which does not depend on the length of the analysis window, to analyze the continuous changes in and determine the classification accuracy of SSVEPs. Moreover, our experiments utilized the gray-scale images, allowing for the presentation of the stimulus as a sinusoidal pattern and reducing the effect of frequency distortion associated with the refresh rate of the liquid-crystal display. Our findings indicated that NHA resulted in exponential improvements in time-frequency resolution when compared with the STFT analysis. As the accuracy of NHA was high, our results suggest that this method is effective for examining SSVEPs and changes in brain waves during experiments conducted using liquid-crystal displays.</description><subject>Biomedical imaging</subject><subject>Brain computer interface</subject><subject>Chirp</subject><subject>chirp stimulus</subject><subject>Distortion</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>grayscale images</subject><subject>Harmonic analysis</subject><subject>Health care</subject><subject>Human-computer interface</subject><subject>Image classification</subject><subject>Internet of medical things</subject><subject>Liquid crystal displays</subject><subject>Medical research</subject><subject>Microsoft Windows</subject><subject>non-harmonic analysis</subject><subject>Sidelobes</subject><subject>steady-state visual evoked potential</subject><subject>Time-frequency analysis</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P3DAQxSPUSkWUT8DFEuds47-xe1utUlgJWtSFXi3HnlCvgp3a2VZ8e8wGofoynpn3nmX9quoCNyuMG_Vlvdl0u92KNFitiFQES3lSnRIsVE05FR_-u3-qznPeN-XIMuLtafWv667QXYoWcvbhEfmAtmGGFGBGcUC34Lw1I7r_XZYZPRw132Oor016isFbtA5mfM4-f0XraRqLePYxIBMc6v7G8XDshpjQbveru0M_IU8xZMifq4-DGTOcv9Wz6uFbd7-5rm9-XG0365vaspbNtePOWol764RlinDS0tZRPPRKGUxN7wbCCHNOCNWaFnjPrBoGCk5IqVom6Fm1XXJdNHs9Jf9k0rOOxuvjIKZHbdLs7QgaGyp4Ky3tGWXEOgm46SlIEKBEK_qSdblkTSn-OUCe9T4eUvl_1oRxLjDBnBUVXVQ2xZwTDO-v4ka_AtMLMP0KTL8BK66LxeUB4N0hBS6oGH0B16KRfQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Jia, Dongbao</creator><creator>Dai, Hongwei</creator><creator>Takashima, Yuta</creator><creator>Nishio, Takuro</creator><creator>Hirobayashi, Kanna</creator><creator>Hasegawa, Masaya</creator><creator>Hirobayashi, Shigeki</creator><creator>Misawa, Tadanobu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7007-4134</orcidid></search><sort><creationdate>2019</creationdate><title>EEG Processing in Internet of Medical Things Using Non-Harmonic Analysis: Application and Evolution for SSVEP Responses</title><author>Jia, Dongbao ; Dai, Hongwei ; Takashima, Yuta ; Nishio, Takuro ; Hirobayashi, Kanna ; Hasegawa, Masaya ; Hirobayashi, Shigeki ; Misawa, Tadanobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d5dcc81bcd6c49252737d31fb99a13abdf2424dd6697a7e5b4c9ff3ed68897463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical imaging</topic><topic>Brain computer interface</topic><topic>Chirp</topic><topic>chirp stimulus</topic><topic>Distortion</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>grayscale images</topic><topic>Harmonic analysis</topic><topic>Health care</topic><topic>Human-computer interface</topic><topic>Image classification</topic><topic>Internet of medical things</topic><topic>Liquid crystal displays</topic><topic>Medical research</topic><topic>Microsoft Windows</topic><topic>non-harmonic analysis</topic><topic>Sidelobes</topic><topic>steady-state visual evoked potential</topic><topic>Time-frequency analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Dongbao</creatorcontrib><creatorcontrib>Dai, Hongwei</creatorcontrib><creatorcontrib>Takashima, Yuta</creatorcontrib><creatorcontrib>Nishio, Takuro</creatorcontrib><creatorcontrib>Hirobayashi, Kanna</creatorcontrib><creatorcontrib>Hasegawa, Masaya</creatorcontrib><creatorcontrib>Hirobayashi, Shigeki</creatorcontrib><creatorcontrib>Misawa, Tadanobu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Dongbao</au><au>Dai, Hongwei</au><au>Takashima, Yuta</au><au>Nishio, Takuro</au><au>Hirobayashi, Kanna</au><au>Hasegawa, Masaya</au><au>Hirobayashi, Shigeki</au><au>Misawa, Tadanobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG Processing in Internet of Medical Things Using Non-Harmonic Analysis: Application and Evolution for SSVEP Responses</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>11318</spage><epage>11327</epage><pages>11318-11327</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, the Internet of Things has been applied in many fields with rapid development, such as software, sensors, and medical and healthcare. In the case of medical and healthcare, extensive research has focused on the development of brain-computer interface systems, particularly those utilizing steady-state visual-evoked potentials (SSVEPs). However, the conventional short-time Fourier transform (STFT) analysis is associated with the low-frequency resolution because of the length of the analysis window, resulting in sidelobe artifacts. In this paper, we utilized the non-harmonic analysis (NHA), which does not depend on the length of the analysis window, to analyze the continuous changes in and determine the classification accuracy of SSVEPs. Moreover, our experiments utilized the gray-scale images, allowing for the presentation of the stimulus as a sinusoidal pattern and reducing the effect of frequency distortion associated with the refresh rate of the liquid-crystal display. Our findings indicated that NHA resulted in exponential improvements in time-frequency resolution when compared with the STFT analysis. As the accuracy of NHA was high, our results suggest that this method is effective for examining SSVEPs and changes in brain waves during experiments conducted using liquid-crystal displays.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2892188</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7007-4134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.11318-11327
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455612154
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Biomedical imaging
Brain computer interface
Chirp
chirp stimulus
Distortion
Fourier analysis
Fourier transforms
grayscale images
Harmonic analysis
Health care
Human-computer interface
Image classification
Internet of medical things
Liquid crystal displays
Medical research
Microsoft Windows
non-harmonic analysis
Sidelobes
steady-state visual evoked potential
Time-frequency analysis
Visualization
title EEG Processing in Internet of Medical Things Using Non-Harmonic Analysis: Application and Evolution for SSVEP Responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20Processing%20in%20Internet%20of%20Medical%20Things%20Using%20Non-Harmonic%20Analysis:%20Application%20and%20Evolution%20for%20SSVEP%20Responses&rft.jtitle=IEEE%20access&rft.au=Jia,%20Dongbao&rft.date=2019&rft.volume=7&rft.spage=11318&rft.epage=11327&rft.pages=11318-11327&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2892188&rft_dat=%3Cproquest_cross%3E2455612154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455612154&rft_id=info:pmid/&rft_ieee_id=8610084&rft_doaj_id=oai_doaj_org_article_1a36578c3b4342cd8e10b3e8e6e9676b&rfr_iscdi=true