Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks

Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.35001-35011
Hauptverfasser: Wang, Mi, Jie, Biao, Bian, Weixin, Ding, Xintao, Zhou, Wen, Wang, Zhengdong, Liu, Mingxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35011
container_issue
container_start_page 35001
container_title IEEE access
container_volume 7
creator Wang, Mi
Jie, Biao
Bian, Weixin
Ding, Xintao
Zhou, Wen
Wang, Zhengdong
Liu, Mingxia
description Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., t -test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an l_{1} -norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2019.2903332
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455612087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664175</ieee_id><doaj_id>oai_doaj_org_article_fcfc8f266b9b4c10aabca939a1a5ec38</doaj_id><sourcerecordid>2455612087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</originalsourceid><addsrcrecordid>eNpNkUFP3DAQhaOqSEWUX8DFEuds7UzsxEdIWYqK2sPC2Zp1xuBtGm_tpIh_X-8Gofrip9H33mj0iuJC8JUQXH-56rqbzWZVcaFXleYAUH0oTiuhdAkS1Mf_9KfiPKUdz6_NI9mcFi-3EffP5XeKIw3sGhP1bDPF2U5zzHJNeBBsQwPZyYeRuRDZdUQ_sq8-UeZZN2BK3nmLR-Ax-fGJrefxyOPAujCOB_NfP72yHzS9hPgrfS5OHA6Jzt_-s-JxffPQfSvvf97edVf3pa15O5VIsqkF9hyts1JybTWA0iTAta6lRgvXVxqhB7SoYOuEhdpCY3tlCSzAWXG35PYBd2Yf_W-MryagN8dBiE8G4-TtQMblFa2rlNrqbW0FR9xa1KBRoCQLbc66XLL2MfyZKU1mF-aYT0ymqqVUouJtkylYKBtDSpHc-1bBzaEwsxRmDoWZt8Ky62JxeSJ6d7RK1aKR8A_qbJSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455612087</pqid></control><display><type>article</type><title>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Mi ; Jie, Biao ; Bian, Weixin ; Ding, Xintao ; Zhou, Wen ; Wang, Zhengdong ; Liu, Mingxia</creator><creatorcontrib>Wang, Mi ; Jie, Biao ; Bian, Weixin ; Ding, Xintao ; Zhou, Wen ; Wang, Zhengdong ; Liu, Mingxia</creatorcontrib><description><![CDATA[Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2903332</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Brain ; Brain diseases ; Classification ; Clustering ; Diseases ; Feature extraction ; Feature selection ; Functional connectivity network ; Functional magnetic resonance imaging ; graph kernel ; Graphical representations ; Kernel ; Kernels ; Laplace equations ; Laplacian regularizer ; Machine learning ; Magnetic resonance imaging ; Networks ; Task analysis ; Vectors (mathematics)</subject><ispartof>IEEE access, 2019, Vol.7, p.35001-35011</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</citedby><cites>FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</cites><orcidid>0000-0002-3722-4935 ; 0000-0002-1266-1864 ; 0000-0003-2341-5359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664175$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Jie, Biao</creatorcontrib><creatorcontrib>Bian, Weixin</creatorcontrib><creatorcontrib>Ding, Xintao</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Zhengdong</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><title>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods.]]></description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain diseases</subject><subject>Classification</subject><subject>Clustering</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Functional connectivity network</subject><subject>Functional magnetic resonance imaging</subject><subject>graph kernel</subject><subject>Graphical representations</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Laplace equations</subject><subject>Laplacian regularizer</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Networks</subject><subject>Task analysis</subject><subject>Vectors (mathematics)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFP3DAQhaOqSEWUX8DFEuds7UzsxEdIWYqK2sPC2Zp1xuBtGm_tpIh_X-8Gofrip9H33mj0iuJC8JUQXH-56rqbzWZVcaFXleYAUH0oTiuhdAkS1Mf_9KfiPKUdz6_NI9mcFi-3EffP5XeKIw3sGhP1bDPF2U5zzHJNeBBsQwPZyYeRuRDZdUQ_sq8-UeZZN2BK3nmLR-Ax-fGJrefxyOPAujCOB_NfP72yHzS9hPgrfS5OHA6Jzt_-s-JxffPQfSvvf97edVf3pa15O5VIsqkF9hyts1JybTWA0iTAta6lRgvXVxqhB7SoYOuEhdpCY3tlCSzAWXG35PYBd2Yf_W-MryagN8dBiE8G4-TtQMblFa2rlNrqbW0FR9xa1KBRoCQLbc66XLL2MfyZKU1mF-aYT0ymqqVUouJtkylYKBtDSpHc-1bBzaEwsxRmDoWZt8Ky62JxeSJ6d7RK1aKR8A_qbJSQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Mi</creator><creator>Jie, Biao</creator><creator>Bian, Weixin</creator><creator>Ding, Xintao</creator><creator>Zhou, Wen</creator><creator>Wang, Zhengdong</creator><creator>Liu, Mingxia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3722-4935</orcidid><orcidid>https://orcid.org/0000-0002-1266-1864</orcidid><orcidid>https://orcid.org/0000-0003-2341-5359</orcidid></search><sort><creationdate>2019</creationdate><title>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</title><author>Wang, Mi ; Jie, Biao ; Bian, Weixin ; Ding, Xintao ; Zhou, Wen ; Wang, Zhengdong ; Liu, Mingxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain diseases</topic><topic>Classification</topic><topic>Clustering</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Functional connectivity network</topic><topic>Functional magnetic resonance imaging</topic><topic>graph kernel</topic><topic>Graphical representations</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Laplace equations</topic><topic>Laplacian regularizer</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Networks</topic><topic>Task analysis</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Jie, Biao</creatorcontrib><creatorcontrib>Bian, Weixin</creatorcontrib><creatorcontrib>Ding, Xintao</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Zhengdong</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mi</au><au>Jie, Biao</au><au>Bian, Weixin</au><au>Ding, Xintao</au><au>Zhou, Wen</au><au>Wang, Zhengdong</au><au>Liu, Mingxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>35001</spage><epage>35011</epage><pages>35001-35011</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2903332</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3722-4935</orcidid><orcidid>https://orcid.org/0000-0002-1266-1864</orcidid><orcidid>https://orcid.org/0000-0003-2341-5359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.35001-35011
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455612087
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Brain
Brain diseases
Classification
Clustering
Diseases
Feature extraction
Feature selection
Functional connectivity network
Functional magnetic resonance imaging
graph kernel
Graphical representations
Kernel
Kernels
Laplace equations
Laplacian regularizer
Machine learning
Magnetic resonance imaging
Networks
Task analysis
Vectors (mathematics)
title Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-Kernel%20Based%20Structured%20Feature%20Selection%20for%20Brain%20Disease%20Classification%20Using%20Functional%20Connectivity%20Networks&rft.jtitle=IEEE%20access&rft.au=Wang,%20Mi&rft.date=2019&rft.volume=7&rft.spage=35001&rft.epage=35011&rft.pages=35001-35011&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2903332&rft_dat=%3Cproquest_doaj_%3E2455612087%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455612087&rft_id=info:pmid/&rft_ieee_id=8664175&rft_doaj_id=oai_doaj_org_article_fcfc8f266b9b4c10aabca939a1a5ec38&rfr_iscdi=true