Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks
Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological me...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.35001-35011 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35011 |
---|---|
container_issue | |
container_start_page | 35001 |
container_title | IEEE access |
container_volume | 7 |
creator | Wang, Mi Jie, Biao Bian, Weixin Ding, Xintao Zhou, Wen Wang, Zhengdong Liu, Mingxia |
description | Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., t -test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an l_{1} -norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods. |
doi_str_mv | 10.1109/ACCESS.2019.2903332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455612087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664175</ieee_id><doaj_id>oai_doaj_org_article_fcfc8f266b9b4c10aabca939a1a5ec38</doaj_id><sourcerecordid>2455612087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</originalsourceid><addsrcrecordid>eNpNkUFP3DAQhaOqSEWUX8DFEuds7UzsxEdIWYqK2sPC2Zp1xuBtGm_tpIh_X-8Gofrip9H33mj0iuJC8JUQXH-56rqbzWZVcaFXleYAUH0oTiuhdAkS1Mf_9KfiPKUdz6_NI9mcFi-3EffP5XeKIw3sGhP1bDPF2U5zzHJNeBBsQwPZyYeRuRDZdUQ_sq8-UeZZN2BK3nmLR-Ax-fGJrefxyOPAujCOB_NfP72yHzS9hPgrfS5OHA6Jzt_-s-JxffPQfSvvf97edVf3pa15O5VIsqkF9hyts1JybTWA0iTAta6lRgvXVxqhB7SoYOuEhdpCY3tlCSzAWXG35PYBd2Yf_W-MryagN8dBiE8G4-TtQMblFa2rlNrqbW0FR9xa1KBRoCQLbc66XLL2MfyZKU1mF-aYT0ymqqVUouJtkylYKBtDSpHc-1bBzaEwsxRmDoWZt8Ky62JxeSJ6d7RK1aKR8A_qbJSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455612087</pqid></control><display><type>article</type><title>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Mi ; Jie, Biao ; Bian, Weixin ; Ding, Xintao ; Zhou, Wen ; Wang, Zhengdong ; Liu, Mingxia</creator><creatorcontrib>Wang, Mi ; Jie, Biao ; Bian, Weixin ; Ding, Xintao ; Zhou, Wen ; Wang, Zhengdong ; Liu, Mingxia</creatorcontrib><description><![CDATA[Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2903332</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Brain ; Brain diseases ; Classification ; Clustering ; Diseases ; Feature extraction ; Feature selection ; Functional connectivity network ; Functional magnetic resonance imaging ; graph kernel ; Graphical representations ; Kernel ; Kernels ; Laplace equations ; Laplacian regularizer ; Machine learning ; Magnetic resonance imaging ; Networks ; Task analysis ; Vectors (mathematics)</subject><ispartof>IEEE access, 2019, Vol.7, p.35001-35011</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</citedby><cites>FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</cites><orcidid>0000-0002-3722-4935 ; 0000-0002-1266-1864 ; 0000-0003-2341-5359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664175$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Jie, Biao</creatorcontrib><creatorcontrib>Bian, Weixin</creatorcontrib><creatorcontrib>Ding, Xintao</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Zhengdong</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><title>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods.]]></description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain diseases</subject><subject>Classification</subject><subject>Clustering</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Functional connectivity network</subject><subject>Functional magnetic resonance imaging</subject><subject>graph kernel</subject><subject>Graphical representations</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Laplace equations</subject><subject>Laplacian regularizer</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Networks</subject><subject>Task analysis</subject><subject>Vectors (mathematics)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFP3DAQhaOqSEWUX8DFEuds7UzsxEdIWYqK2sPC2Zp1xuBtGm_tpIh_X-8Gofrip9H33mj0iuJC8JUQXH-56rqbzWZVcaFXleYAUH0oTiuhdAkS1Mf_9KfiPKUdz6_NI9mcFi-3EffP5XeKIw3sGhP1bDPF2U5zzHJNeBBsQwPZyYeRuRDZdUQ_sq8-UeZZN2BK3nmLR-Ax-fGJrefxyOPAujCOB_NfP72yHzS9hPgrfS5OHA6Jzt_-s-JxffPQfSvvf97edVf3pa15O5VIsqkF9hyts1JybTWA0iTAta6lRgvXVxqhB7SoYOuEhdpCY3tlCSzAWXG35PYBd2Yf_W-MryagN8dBiE8G4-TtQMblFa2rlNrqbW0FR9xa1KBRoCQLbc66XLL2MfyZKU1mF-aYT0ymqqVUouJtkylYKBtDSpHc-1bBzaEwsxRmDoWZt8Ky62JxeSJ6d7RK1aKR8A_qbJSQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Mi</creator><creator>Jie, Biao</creator><creator>Bian, Weixin</creator><creator>Ding, Xintao</creator><creator>Zhou, Wen</creator><creator>Wang, Zhengdong</creator><creator>Liu, Mingxia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3722-4935</orcidid><orcidid>https://orcid.org/0000-0002-1266-1864</orcidid><orcidid>https://orcid.org/0000-0003-2341-5359</orcidid></search><sort><creationdate>2019</creationdate><title>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</title><author>Wang, Mi ; Jie, Biao ; Bian, Weixin ; Ding, Xintao ; Zhou, Wen ; Wang, Zhengdong ; Liu, Mingxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ae5741ad0acfc5509c93369e13f8f8e791fd29a3d3aca63bf1c34c37cd6ce3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain diseases</topic><topic>Classification</topic><topic>Clustering</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Functional connectivity network</topic><topic>Functional magnetic resonance imaging</topic><topic>graph kernel</topic><topic>Graphical representations</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Laplace equations</topic><topic>Laplacian regularizer</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Networks</topic><topic>Task analysis</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Jie, Biao</creatorcontrib><creatorcontrib>Bian, Weixin</creatorcontrib><creatorcontrib>Ding, Xintao</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Zhengdong</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mi</au><au>Jie, Biao</au><au>Bian, Weixin</au><au>Ding, Xintao</au><au>Zhou, Wen</au><au>Wang, Zhengdong</au><au>Liu, Mingxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>35001</spage><epage>35011</epage><pages>35001-35011</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Feature selection has been applied to the analysis of complex structured data, such as functional connectivity networks (FCNs) constructed on resting-state functional magnetic resonance imaging (rs-fMRI), for removing redundant/noisy information. Previous studies usually first extract topological measures (e.g., clustering coefficients) from FCNs as feature vectors, and then perform vector-based algorithms (e.g., <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-test) for feature selection. However, due to the use of vector-based representations, these methods simply ignore important local-to-global structural information of connectivity networks, while such structural information could be used as prior knowledge of networks to improve the learning performance. To this end, we propose a graph kernel-based structured feature selection (gk-SFS) method for brain disease classification with connectivity networks. Different from previous studies, our proposed gk-SFS method uses the graph kernel technique to calculate the similarity of networks and thus can explicitly take advantage of the structural information of connectivity networks. Specifically, we first develop a new graph kernel-based Laplacian regularizer in our gk-SFS model to preserve the structural information of connectivity networks. We also employ an <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-norm based sparsity regularizer to select a small number of discriminative features for brain disease analysis (classification). The experimental results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate that the proposed gk-SFS method can further improve the classification performance compared with the state-of-the-art methods.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2903332</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3722-4935</orcidid><orcidid>https://orcid.org/0000-0002-1266-1864</orcidid><orcidid>https://orcid.org/0000-0003-2341-5359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.35001-35011 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455612087 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Brain Brain diseases Classification Clustering Diseases Feature extraction Feature selection Functional connectivity network Functional magnetic resonance imaging graph kernel Graphical representations Kernel Kernels Laplace equations Laplacian regularizer Machine learning Magnetic resonance imaging Networks Task analysis Vectors (mathematics) |
title | Graph-Kernel Based Structured Feature Selection for Brain Disease Classification Using Functional Connectivity Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-Kernel%20Based%20Structured%20Feature%20Selection%20for%20Brain%20Disease%20Classification%20Using%20Functional%20Connectivity%20Networks&rft.jtitle=IEEE%20access&rft.au=Wang,%20Mi&rft.date=2019&rft.volume=7&rft.spage=35001&rft.epage=35011&rft.pages=35001-35011&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2903332&rft_dat=%3Cproquest_doaj_%3E2455612087%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455612087&rft_id=info:pmid/&rft_ieee_id=8664175&rft_doaj_id=oai_doaj_org_article_fcfc8f266b9b4c10aabca939a1a5ec38&rfr_iscdi=true |