Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction

The long short-term memory (LSTM) model is one of the most commonly used vehicle trajectory predicting models. In this paper, we study two problems of the existing LSTM models for long-term trajectory prediction in dense traffic. First, the existing LSTM models cannot simultaneously describe the spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.38287-38296
Hauptverfasser: Dai, Shengzhe, Li, Li, Li, Zhiheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38296
container_issue
container_start_page 38287
container_title IEEE access
container_volume 7
creator Dai, Shengzhe
Li, Li
Li, Zhiheng
description The long short-term memory (LSTM) model is one of the most commonly used vehicle trajectory predicting models. In this paper, we study two problems of the existing LSTM models for long-term trajectory prediction in dense traffic. First, the existing LSTM models cannot simultaneously describe the spatial interactions between different vehicles and the temporal relations between the trajectory time series. Thus, the existing models cannot accurately estimate the influence of the interactions in dense traffic. Second, the basic LSTM models often suffer from vanishing gradient problem and are, thus, hard to train for long time series. These two problems sometimes lead to large prediction errors in vehicle trajectory predicting. In this paper, we proposed a spatio-temporal LSTM-based trajectory prediction model (ST-LSTM) which includes two modifications. We embed spatial interactions into LSTM models to implicitly measure the interactions between neighboring vehicles. We also introduce shortcut connections between the inputs and the outputs of two consecutive LSTM layers to handle gradient vanishment. The proposed new model is evaluated on the I-80 and US-101 datasets. Results show that our new model has a higher trajectory predicting accuracy than one state-of-the-art model [maneuver-LSTM (M-LSTM)].
doi_str_mv 10.1109/ACCESS.2019.2907000
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455611361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672889</ieee_id><doaj_id>oai_doaj_org_article_6cc2f490af1449999873405b3b03fa84</doaj_id><sourcerecordid>2455611361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4124dae70ee42177a696989f02fb7b6a1b0c8d5d2b7cd383ccf32ebfc908f7903</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRULS_oJuA69abx-SxlFK10GKh1W3IZG5qSm1qZhT89047ImaTcPjOuTecohhSGFMK5u5-MpmuVmMG1IyZAQUAZ8UVo9KMeMnl-b_3ZTFomm0HgO6kUl0Vy0WqcRf3G_KKb9HvkMz2LWbn25j2DfmKjnREDBFrMl-tF-TENySkTNbZbdG3KX-TZcY6njw3xUVwuwYHv_d18fIwXU-eRvPnx9nkfj7yQol2JCgTtUMFiIJRpZw00mgTgIVKVdLRCryuy5pVytdcc-8DZ1gFb0AHZYBfF7M-t05uaw85vrv8bZOL9iSkvLEut8cfWek9C8KAC1QI0x2tuICy4hXw4LTosm77rENOH5_YtHabPvO-W98yUZaSUi5pR_Ge8jk1TcbwN5WCPTZh-ybssQn720TnGvauiIh_Di0V09rwH-bug2M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611361</pqid></control><display><type>article</type><title>Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dai, Shengzhe ; Li, Li ; Li, Zhiheng</creator><creatorcontrib>Dai, Shengzhe ; Li, Li ; Li, Zhiheng</creatorcontrib><description>The long short-term memory (LSTM) model is one of the most commonly used vehicle trajectory predicting models. In this paper, we study two problems of the existing LSTM models for long-term trajectory prediction in dense traffic. First, the existing LSTM models cannot simultaneously describe the spatial interactions between different vehicles and the temporal relations between the trajectory time series. Thus, the existing models cannot accurately estimate the influence of the interactions in dense traffic. Second, the basic LSTM models often suffer from vanishing gradient problem and are, thus, hard to train for long time series. These two problems sometimes lead to large prediction errors in vehicle trajectory predicting. In this paper, we proposed a spatio-temporal LSTM-based trajectory prediction model (ST-LSTM) which includes two modifications. We embed spatial interactions into LSTM models to implicitly measure the interactions between neighboring vehicles. We also introduce shortcut connections between the inputs and the outputs of two consecutive LSTM layers to handle gradient vanishment. The proposed new model is evaluated on the I-80 and US-101 datasets. Results show that our new model has a higher trajectory predicting accuracy than one state-of-the-art model [maneuver-LSTM (M-LSTM)].</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2907000</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Brakes ; Hidden Markov models ; long short-term memory (LSTM) ; Model accuracy ; Prediction models ; Predictions ; Predictive models ; Roads ; shortcut connection ; Time series ; Time series analysis ; Training ; Trajectory ; Trajectory prediction ; vehicle interactions ; Vehicles</subject><ispartof>IEEE access, 2019, Vol.7, p.38287-38296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4124dae70ee42177a696989f02fb7b6a1b0c8d5d2b7cd383ccf32ebfc908f7903</citedby><cites>FETCH-LOGICAL-c474t-4124dae70ee42177a696989f02fb7b6a1b0c8d5d2b7cd383ccf32ebfc908f7903</cites><orcidid>0000-0002-1490-7637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672889$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Dai, Shengzhe</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Li, Zhiheng</creatorcontrib><title>Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>The long short-term memory (LSTM) model is one of the most commonly used vehicle trajectory predicting models. In this paper, we study two problems of the existing LSTM models for long-term trajectory prediction in dense traffic. First, the existing LSTM models cannot simultaneously describe the spatial interactions between different vehicles and the temporal relations between the trajectory time series. Thus, the existing models cannot accurately estimate the influence of the interactions in dense traffic. Second, the basic LSTM models often suffer from vanishing gradient problem and are, thus, hard to train for long time series. These two problems sometimes lead to large prediction errors in vehicle trajectory predicting. In this paper, we proposed a spatio-temporal LSTM-based trajectory prediction model (ST-LSTM) which includes two modifications. We embed spatial interactions into LSTM models to implicitly measure the interactions between neighboring vehicles. We also introduce shortcut connections between the inputs and the outputs of two consecutive LSTM layers to handle gradient vanishment. The proposed new model is evaluated on the I-80 and US-101 datasets. Results show that our new model has a higher trajectory predicting accuracy than one state-of-the-art model [maneuver-LSTM (M-LSTM)].</description><subject>Brakes</subject><subject>Hidden Markov models</subject><subject>long short-term memory (LSTM)</subject><subject>Model accuracy</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Roads</subject><subject>shortcut connection</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Training</subject><subject>Trajectory</subject><subject>Trajectory prediction</subject><subject>vehicle interactions</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRULS_oJuA69abx-SxlFK10GKh1W3IZG5qSm1qZhT89047ImaTcPjOuTecohhSGFMK5u5-MpmuVmMG1IyZAQUAZ8UVo9KMeMnl-b_3ZTFomm0HgO6kUl0Vy0WqcRf3G_KKb9HvkMz2LWbn25j2DfmKjnREDBFrMl-tF-TENySkTNbZbdG3KX-TZcY6njw3xUVwuwYHv_d18fIwXU-eRvPnx9nkfj7yQol2JCgTtUMFiIJRpZw00mgTgIVKVdLRCryuy5pVytdcc-8DZ1gFb0AHZYBfF7M-t05uaw85vrv8bZOL9iSkvLEut8cfWek9C8KAC1QI0x2tuICy4hXw4LTosm77rENOH5_YtHabPvO-W98yUZaSUi5pR_Ge8jk1TcbwN5WCPTZh-ybssQn720TnGvauiIh_Di0V09rwH-bug2M</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Dai, Shengzhe</creator><creator>Li, Li</creator><creator>Li, Zhiheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1490-7637</orcidid></search><sort><creationdate>2019</creationdate><title>Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction</title><author>Dai, Shengzhe ; Li, Li ; Li, Zhiheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4124dae70ee42177a696989f02fb7b6a1b0c8d5d2b7cd383ccf32ebfc908f7903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brakes</topic><topic>Hidden Markov models</topic><topic>long short-term memory (LSTM)</topic><topic>Model accuracy</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Roads</topic><topic>shortcut connection</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Training</topic><topic>Trajectory</topic><topic>Trajectory prediction</topic><topic>vehicle interactions</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Shengzhe</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Li, Zhiheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Shengzhe</au><au>Li, Li</au><au>Li, Zhiheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>38287</spage><epage>38296</epage><pages>38287-38296</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The long short-term memory (LSTM) model is one of the most commonly used vehicle trajectory predicting models. In this paper, we study two problems of the existing LSTM models for long-term trajectory prediction in dense traffic. First, the existing LSTM models cannot simultaneously describe the spatial interactions between different vehicles and the temporal relations between the trajectory time series. Thus, the existing models cannot accurately estimate the influence of the interactions in dense traffic. Second, the basic LSTM models often suffer from vanishing gradient problem and are, thus, hard to train for long time series. These two problems sometimes lead to large prediction errors in vehicle trajectory predicting. In this paper, we proposed a spatio-temporal LSTM-based trajectory prediction model (ST-LSTM) which includes two modifications. We embed spatial interactions into LSTM models to implicitly measure the interactions between neighboring vehicles. We also introduce shortcut connections between the inputs and the outputs of two consecutive LSTM layers to handle gradient vanishment. The proposed new model is evaluated on the I-80 and US-101 datasets. Results show that our new model has a higher trajectory predicting accuracy than one state-of-the-art model [maneuver-LSTM (M-LSTM)].</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2907000</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1490-7637</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.38287-38296
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455611361
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Brakes
Hidden Markov models
long short-term memory (LSTM)
Model accuracy
Prediction models
Predictions
Predictive models
Roads
shortcut connection
Time series
Time series analysis
Training
Trajectory
Trajectory prediction
vehicle interactions
Vehicles
title Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Vehicle%20Interactions%20via%20Modified%20LSTM%20Models%20for%20Trajectory%20Prediction&rft.jtitle=IEEE%20access&rft.au=Dai,%20Shengzhe&rft.date=2019&rft.volume=7&rft.spage=38287&rft.epage=38296&rft.pages=38287-38296&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2907000&rft_dat=%3Cproquest_cross%3E2455611361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455611361&rft_id=info:pmid/&rft_ieee_id=8672889&rft_doaj_id=oai_doaj_org_article_6cc2f490af1449999873405b3b03fa84&rfr_iscdi=true