Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings

This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019-01, Vol.7, p.1-1
Hauptverfasser: Akyildiz, Ian F., Chen, Jiande, Ghovanloo, Maysam, Guler, Ulkuhan, Ozkaya-Ahmadov, Tevhide, Pierobon, Massimiliano, Sarioglu, A. Fatih, Unluturk, Bige D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 7
creator Akyildiz, Ian F.
Chen, Jiande
Ghovanloo, Maysam
Guler, Ulkuhan
Ozkaya-Ahmadov, Tevhide
Pierobon, Massimiliano
Sarioglu, A. Fatih
Unluturk, Bige D.
description This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare.
doi_str_mv 10.1109/ACCESS.2019.2942312
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455610001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8844707</ieee_id><doaj_id>oai_doaj_org_article_2fca3abb0083473f971fc84a69236fb8</doaj_id><sourcerecordid>2455610001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKVfwMUS5xS_8vCxRAUqlXJo75aTrKlLGhfHEfD3OARVWCvZGu-M1zNRdEvwnBAs7hdFsdxu5xQTMaeCU0boRTShJBUxS1h6-e98Hc267oDDygOUZJOofjGVs6WxR4ifeh8_OGVatPgyHVKh0EO4sQ1UfaMcKuzx2LemUt7YFm3Af1r3jrR1yO8BrVoPrgWPrB5o8Ua1drc37Vt3E11p1XQw-9un0fZxuSue4_Xr06pYrOOK49zHkLKkynGmKeVMQc5xmZRpLTAnoqQ1pYpgUlPGhdBi-A7DRGVkAEEAm0arUbW26iBPzhyV-5ZWGfkLWPcmlfOmakBSXSmmyjL4wHjGtMiIrnKuUkFZqss8aN2NWidnP3rovDzY3rVheEl5kqQkWEhCFxu7goVd50CfXyVYDtnIMRs5ZCP_sgms25FlAODMyHPOM5yxH-HtiNs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455610001</pqid></control><display><type>article</type><title>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Akyildiz, Ian F. ; Chen, Jiande ; Ghovanloo, Maysam ; Guler, Ulkuhan ; Ozkaya-Ahmadov, Tevhide ; Pierobon, Massimiliano ; Sarioglu, A. Fatih ; Unluturk, Bige D.</creator><creatorcontrib>Akyildiz, Ian F. ; Chen, Jiande ; Ghovanloo, Maysam ; Guler, Ulkuhan ; Ozkaya-Ahmadov, Tevhide ; Pierobon, Massimiliano ; Sarioglu, A. Fatih ; Unluturk, Bige D.</creatorcontrib><description>This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2942312</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Axons ; Biocompatibility ; Biological activity ; Biological system modeling ; Biomedical Implants ; Biosensors ; Brain ; Channel models ; Electric contacts ; Infrastructure ; Internet ; Internet of Bio-NanoThings ; Intra-body Networks ; Microorganisms ; Molecular Communication ; Molecular communication (telecommunication) ; Nanonetworks ; Nervous system ; Sensors ; Sustainable development</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</citedby><cites>FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</cites><orcidid>0000-0002-9047-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8844707$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,27640,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Akyildiz, Ian F.</creatorcontrib><creatorcontrib>Chen, Jiande</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><creatorcontrib>Guler, Ulkuhan</creatorcontrib><creatorcontrib>Ozkaya-Ahmadov, Tevhide</creatorcontrib><creatorcontrib>Pierobon, Massimiliano</creatorcontrib><creatorcontrib>Sarioglu, A. Fatih</creatorcontrib><creatorcontrib>Unluturk, Bige D.</creatorcontrib><title>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare.</description><subject>Axons</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biological system modeling</subject><subject>Biomedical Implants</subject><subject>Biosensors</subject><subject>Brain</subject><subject>Channel models</subject><subject>Electric contacts</subject><subject>Infrastructure</subject><subject>Internet</subject><subject>Internet of Bio-NanoThings</subject><subject>Intra-body Networks</subject><subject>Microorganisms</subject><subject>Molecular Communication</subject><subject>Molecular communication (telecommunication)</subject><subject>Nanonetworks</subject><subject>Nervous system</subject><subject>Sensors</subject><subject>Sustainable development</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKVfwMUS5xS_8vCxRAUqlXJo75aTrKlLGhfHEfD3OARVWCvZGu-M1zNRdEvwnBAs7hdFsdxu5xQTMaeCU0boRTShJBUxS1h6-e98Hc267oDDygOUZJOofjGVs6WxR4ifeh8_OGVatPgyHVKh0EO4sQ1UfaMcKuzx2LemUt7YFm3Af1r3jrR1yO8BrVoPrgWPrB5o8Ua1drc37Vt3E11p1XQw-9un0fZxuSue4_Xr06pYrOOK49zHkLKkynGmKeVMQc5xmZRpLTAnoqQ1pYpgUlPGhdBi-A7DRGVkAEEAm0arUbW26iBPzhyV-5ZWGfkLWPcmlfOmakBSXSmmyjL4wHjGtMiIrnKuUkFZqss8aN2NWidnP3rovDzY3rVheEl5kqQkWEhCFxu7goVd50CfXyVYDtnIMRs5ZCP_sgms25FlAODMyHPOM5yxH-HtiNs</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Akyildiz, Ian F.</creator><creator>Chen, Jiande</creator><creator>Ghovanloo, Maysam</creator><creator>Guler, Ulkuhan</creator><creator>Ozkaya-Ahmadov, Tevhide</creator><creator>Pierobon, Massimiliano</creator><creator>Sarioglu, A. Fatih</creator><creator>Unluturk, Bige D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9047-1978</orcidid></search><sort><creationdate>20190101</creationdate><title>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</title><author>Akyildiz, Ian F. ; Chen, Jiande ; Ghovanloo, Maysam ; Guler, Ulkuhan ; Ozkaya-Ahmadov, Tevhide ; Pierobon, Massimiliano ; Sarioglu, A. Fatih ; Unluturk, Bige D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axons</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biological system modeling</topic><topic>Biomedical Implants</topic><topic>Biosensors</topic><topic>Brain</topic><topic>Channel models</topic><topic>Electric contacts</topic><topic>Infrastructure</topic><topic>Internet</topic><topic>Internet of Bio-NanoThings</topic><topic>Intra-body Networks</topic><topic>Microorganisms</topic><topic>Molecular Communication</topic><topic>Molecular communication (telecommunication)</topic><topic>Nanonetworks</topic><topic>Nervous system</topic><topic>Sensors</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akyildiz, Ian F.</creatorcontrib><creatorcontrib>Chen, Jiande</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><creatorcontrib>Guler, Ulkuhan</creatorcontrib><creatorcontrib>Ozkaya-Ahmadov, Tevhide</creatorcontrib><creatorcontrib>Pierobon, Massimiliano</creatorcontrib><creatorcontrib>Sarioglu, A. Fatih</creatorcontrib><creatorcontrib>Unluturk, Bige D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akyildiz, Ian F.</au><au>Chen, Jiande</au><au>Ghovanloo, Maysam</au><au>Guler, Ulkuhan</au><au>Ozkaya-Ahmadov, Tevhide</au><au>Pierobon, Massimiliano</au><au>Sarioglu, A. Fatih</au><au>Unluturk, Bige D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2942312</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9047-1978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019-01, Vol.7, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455610001
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Axons
Biocompatibility
Biological activity
Biological system modeling
Biomedical Implants
Biosensors
Brain
Channel models
Electric contacts
Infrastructure
Internet
Internet of Bio-NanoThings
Intra-body Networks
Microorganisms
Molecular Communication
Molecular communication (telecommunication)
Nanonetworks
Nervous system
Sensors
Sustainable development
title Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbiome-Gut-Brain%20Axis%20as%20a%20Biomolecular%20Communication%20Network%20for%20the%20Internet%20of%20Bio-NanoThings&rft.jtitle=IEEE%20access&rft.au=Akyildiz,%20Ian%20F.&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2942312&rft_dat=%3Cproquest_ieee_%3E2455610001%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455610001&rft_id=info:pmid/&rft_ieee_id=8844707&rft_doaj_id=oai_doaj_org_article_2fca3abb0083473f971fc84a69236fb8&rfr_iscdi=true