Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings
This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices wit...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019-01, Vol.7, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 7 |
creator | Akyildiz, Ian F. Chen, Jiande Ghovanloo, Maysam Guler, Ulkuhan Ozkaya-Ahmadov, Tevhide Pierobon, Massimiliano Sarioglu, A. Fatih Unluturk, Bige D. |
description | This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare. |
doi_str_mv | 10.1109/ACCESS.2019.2942312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455610001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8844707</ieee_id><doaj_id>oai_doaj_org_article_2fca3abb0083473f971fc84a69236fb8</doaj_id><sourcerecordid>2455610001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKVfwMUS5xS_8vCxRAUqlXJo75aTrKlLGhfHEfD3OARVWCvZGu-M1zNRdEvwnBAs7hdFsdxu5xQTMaeCU0boRTShJBUxS1h6-e98Hc267oDDygOUZJOofjGVs6WxR4ifeh8_OGVatPgyHVKh0EO4sQ1UfaMcKuzx2LemUt7YFm3Af1r3jrR1yO8BrVoPrgWPrB5o8Ua1drc37Vt3E11p1XQw-9un0fZxuSue4_Xr06pYrOOK49zHkLKkynGmKeVMQc5xmZRpLTAnoqQ1pYpgUlPGhdBi-A7DRGVkAEEAm0arUbW26iBPzhyV-5ZWGfkLWPcmlfOmakBSXSmmyjL4wHjGtMiIrnKuUkFZqss8aN2NWidnP3rovDzY3rVheEl5kqQkWEhCFxu7goVd50CfXyVYDtnIMRs5ZCP_sgms25FlAODMyHPOM5yxH-HtiNs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455610001</pqid></control><display><type>article</type><title>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Akyildiz, Ian F. ; Chen, Jiande ; Ghovanloo, Maysam ; Guler, Ulkuhan ; Ozkaya-Ahmadov, Tevhide ; Pierobon, Massimiliano ; Sarioglu, A. Fatih ; Unluturk, Bige D.</creator><creatorcontrib>Akyildiz, Ian F. ; Chen, Jiande ; Ghovanloo, Maysam ; Guler, Ulkuhan ; Ozkaya-Ahmadov, Tevhide ; Pierobon, Massimiliano ; Sarioglu, A. Fatih ; Unluturk, Bige D.</creatorcontrib><description>This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2942312</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Axons ; Biocompatibility ; Biological activity ; Biological system modeling ; Biomedical Implants ; Biosensors ; Brain ; Channel models ; Electric contacts ; Infrastructure ; Internet ; Internet of Bio-NanoThings ; Intra-body Networks ; Microorganisms ; Molecular Communication ; Molecular communication (telecommunication) ; Nanonetworks ; Nervous system ; Sensors ; Sustainable development</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</citedby><cites>FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</cites><orcidid>0000-0002-9047-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8844707$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,27640,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Akyildiz, Ian F.</creatorcontrib><creatorcontrib>Chen, Jiande</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><creatorcontrib>Guler, Ulkuhan</creatorcontrib><creatorcontrib>Ozkaya-Ahmadov, Tevhide</creatorcontrib><creatorcontrib>Pierobon, Massimiliano</creatorcontrib><creatorcontrib>Sarioglu, A. Fatih</creatorcontrib><creatorcontrib>Unluturk, Bige D.</creatorcontrib><title>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare.</description><subject>Axons</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biological system modeling</subject><subject>Biomedical Implants</subject><subject>Biosensors</subject><subject>Brain</subject><subject>Channel models</subject><subject>Electric contacts</subject><subject>Infrastructure</subject><subject>Internet</subject><subject>Internet of Bio-NanoThings</subject><subject>Intra-body Networks</subject><subject>Microorganisms</subject><subject>Molecular Communication</subject><subject>Molecular communication (telecommunication)</subject><subject>Nanonetworks</subject><subject>Nervous system</subject><subject>Sensors</subject><subject>Sustainable development</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKVfwMUS5xS_8vCxRAUqlXJo75aTrKlLGhfHEfD3OARVWCvZGu-M1zNRdEvwnBAs7hdFsdxu5xQTMaeCU0boRTShJBUxS1h6-e98Hc267oDDygOUZJOofjGVs6WxR4ifeh8_OGVatPgyHVKh0EO4sQ1UfaMcKuzx2LemUt7YFm3Af1r3jrR1yO8BrVoPrgWPrB5o8Ua1drc37Vt3E11p1XQw-9un0fZxuSue4_Xr06pYrOOK49zHkLKkynGmKeVMQc5xmZRpLTAnoqQ1pYpgUlPGhdBi-A7DRGVkAEEAm0arUbW26iBPzhyV-5ZWGfkLWPcmlfOmakBSXSmmyjL4wHjGtMiIrnKuUkFZqss8aN2NWidnP3rovDzY3rVheEl5kqQkWEhCFxu7goVd50CfXyVYDtnIMRs5ZCP_sgms25FlAODMyHPOM5yxH-HtiNs</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Akyildiz, Ian F.</creator><creator>Chen, Jiande</creator><creator>Ghovanloo, Maysam</creator><creator>Guler, Ulkuhan</creator><creator>Ozkaya-Ahmadov, Tevhide</creator><creator>Pierobon, Massimiliano</creator><creator>Sarioglu, A. Fatih</creator><creator>Unluturk, Bige D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9047-1978</orcidid></search><sort><creationdate>20190101</creationdate><title>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</title><author>Akyildiz, Ian F. ; Chen, Jiande ; Ghovanloo, Maysam ; Guler, Ulkuhan ; Ozkaya-Ahmadov, Tevhide ; Pierobon, Massimiliano ; Sarioglu, A. Fatih ; Unluturk, Bige D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e635c807f2243ae840b5b6d90419b2d22a101d23499f93536301a71101de9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axons</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biological system modeling</topic><topic>Biomedical Implants</topic><topic>Biosensors</topic><topic>Brain</topic><topic>Channel models</topic><topic>Electric contacts</topic><topic>Infrastructure</topic><topic>Internet</topic><topic>Internet of Bio-NanoThings</topic><topic>Intra-body Networks</topic><topic>Microorganisms</topic><topic>Molecular Communication</topic><topic>Molecular communication (telecommunication)</topic><topic>Nanonetworks</topic><topic>Nervous system</topic><topic>Sensors</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akyildiz, Ian F.</creatorcontrib><creatorcontrib>Chen, Jiande</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><creatorcontrib>Guler, Ulkuhan</creatorcontrib><creatorcontrib>Ozkaya-Ahmadov, Tevhide</creatorcontrib><creatorcontrib>Pierobon, Massimiliano</creatorcontrib><creatorcontrib>Sarioglu, A. Fatih</creatorcontrib><creatorcontrib>Unluturk, Bige D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akyildiz, Ian F.</au><au>Chen, Jiande</au><au>Ghovanloo, Maysam</au><au>Guler, Ulkuhan</au><au>Ozkaya-Ahmadov, Tevhide</au><au>Pierobon, Massimiliano</au><au>Sarioglu, A. Fatih</au><au>Unluturk, Bige D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents fundamental challenges in the development of a self-sustainable and biocompatible network infrastructure to interconnect the next-generation electrical and biological wearable and implantable devices, i.e., the Internet of Bio-NanoThings. The direct contact of IoBNT devices with the human body, where the cells naturally communicate and organize into networks, suggests the possibility to exploit these biological communications for the device-to-device interconnection. The aim of this work is to investigate minimally invasive, heterogeneous, and externally accessible electrical/molecular communication channels to transmit information between these devices through the Microbiome-Gut-Brain Axis (MGBA), composed of the gut microbial community, the gut tissues, the enteric nervous system. A framework to develop a network infrastructure on top of the biological processes underlying the MGBA, and the intercommunications among its components is proposed. To implement this framework, the following challenges need to be tackled. First, physical channel models should be developed to quantitatively characterize electrical and molecular communications through the MGBA. Second, novel technological solutions in information modulation, coding and routing should be developed. Third, to support these efforts with experimental data, a first-of-a-kind implantable MGBA network probe device composed of a hub connected to an ensemble of electrical and molecular stimulation and sensing modules should be designed and engineered, together with an innovative gut-on-a-chip in-vitro model system. The discussion in this paper establishes the basis for a completely novel transdisciplinary networking domain at the core of the next-generation biomedical systems for pervasive, perpetual, and remote healthcare.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2942312</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9047-1978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019-01, Vol.7, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455610001 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Axons Biocompatibility Biological activity Biological system modeling Biomedical Implants Biosensors Brain Channel models Electric contacts Infrastructure Internet Internet of Bio-NanoThings Intra-body Networks Microorganisms Molecular Communication Molecular communication (telecommunication) Nanonetworks Nervous system Sensors Sustainable development |
title | Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbiome-Gut-Brain%20Axis%20as%20a%20Biomolecular%20Communication%20Network%20for%20the%20Internet%20of%20Bio-NanoThings&rft.jtitle=IEEE%20access&rft.au=Akyildiz,%20Ian%20F.&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2942312&rft_dat=%3Cproquest_ieee_%3E2455610001%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455610001&rft_id=info:pmid/&rft_ieee_id=8844707&rft_doaj_id=oai_doaj_org_article_2fca3abb0083473f971fc84a69236fb8&rfr_iscdi=true |