Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean
During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.139264-139275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139275 |
---|---|
container_issue | |
container_start_page | 139264 |
container_title | IEEE access |
container_volume | 7 |
creator | Zheng, Chong-wei Chen, Yun-Ge Zhan, Chao Wang, Qing |
description | During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters. |
doi_str_mv | 10.1109/ACCESS.2019.2943903 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455608612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8850114</ieee_id><doaj_id>oai_doaj_org_article_e1eae147c09e4700b54b21d4f511f574</doaj_id><sourcerecordid>2455608612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYsoOOZ-wV4KPnfeNEmb-DbK1IEwofM5pMnN7KjrTDtk_97MzuF9yeVwzrnhi6IpgRkhIB_mRbEoy1kKRM5SyagEehWNUpLJhHKaXf_bb6NJ120hjAgSz0fRomwP3mC89trUu03curj_wLj8xqaJFzv0m-NjPI8L3QWxP9jjn-Mt-F1t4pVBvbuLbpxuOpyc33H0_rRYFy_J6-p5WcxfE8NA9EkuIBPSpM5QC6RiaCthLQhRZVRWjkGVaa0lk9ZxKWzmjBbMCEmJySXonI6j5dBrW71Ve19_an9Ura7Vr9D6jdK-r02DCglqJCw3IJHlABVnVUosc5wQx3MWuu6Hrr1vvw7Y9WobUOzC91XKOM9AZCQNLjq4jG-7zqO7XCWgTvjVgF-d8Ksz_pCaDqkaES8JITgQwugPwNl-LA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455608612</pqid></control><display><type>article</type><title>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</title><source>IEEE Open Access Journals</source><source>Directory of Open Journals (DOAJ)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Chong-wei ; Chen, Yun-Ge ; Zhan, Chao ; Wang, Qing</creator><creatorcontrib>Zheng, Chong-wei ; Chen, Yun-Ge ; Zhan, Chao ; Wang, Qing</creatorcontrib><description>During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943903</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Atmospheric modeling ; back-stepping method ; Case studies ; Correlation ; Energy ; Energy storage ; ERA-40 wave reanalysis ; Forecasting ; Indexes ; Monitoring ; Oceans ; source trace ; swell energy ; Water resources ; Wave power ; Wave propagation ; Weather forecasting</subject><ispartof>IEEE access, 2019, Vol.7, p.139264-139275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</citedby><cites>FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</cites><orcidid>0000-0002-1156-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8850114$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zheng, Chong-wei</creatorcontrib><creatorcontrib>Chen, Yun-Ge</creatorcontrib><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</title><title>IEEE access</title><addtitle>Access</addtitle><description>During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters.</description><subject>Atmospheric modeling</subject><subject>back-stepping method</subject><subject>Case studies</subject><subject>Correlation</subject><subject>Energy</subject><subject>Energy storage</subject><subject>ERA-40 wave reanalysis</subject><subject>Forecasting</subject><subject>Indexes</subject><subject>Monitoring</subject><subject>Oceans</subject><subject>source trace</subject><subject>swell energy</subject><subject>Water resources</subject><subject>Wave power</subject><subject>Wave propagation</subject><subject>Weather forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFFLwzAUhYsoOOZ-wV4KPnfeNEmb-DbK1IEwofM5pMnN7KjrTDtk_97MzuF9yeVwzrnhi6IpgRkhIB_mRbEoy1kKRM5SyagEehWNUpLJhHKaXf_bb6NJ120hjAgSz0fRomwP3mC89trUu03curj_wLj8xqaJFzv0m-NjPI8L3QWxP9jjn-Mt-F1t4pVBvbuLbpxuOpyc33H0_rRYFy_J6-p5WcxfE8NA9EkuIBPSpM5QC6RiaCthLQhRZVRWjkGVaa0lk9ZxKWzmjBbMCEmJySXonI6j5dBrW71Ve19_an9Ura7Vr9D6jdK-r02DCglqJCw3IJHlABVnVUosc5wQx3MWuu6Hrr1vvw7Y9WobUOzC91XKOM9AZCQNLjq4jG-7zqO7XCWgTvjVgF-d8Ksz_pCaDqkaES8JITgQwugPwNl-LA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zheng, Chong-wei</creator><creator>Chen, Yun-Ge</creator><creator>Zhan, Chao</creator><creator>Wang, Qing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid></search><sort><creationdate>2019</creationdate><title>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</title><author>Zheng, Chong-wei ; Chen, Yun-Ge ; Zhan, Chao ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric modeling</topic><topic>back-stepping method</topic><topic>Case studies</topic><topic>Correlation</topic><topic>Energy</topic><topic>Energy storage</topic><topic>ERA-40 wave reanalysis</topic><topic>Forecasting</topic><topic>Indexes</topic><topic>Monitoring</topic><topic>Oceans</topic><topic>source trace</topic><topic>swell energy</topic><topic>Water resources</topic><topic>Wave power</topic><topic>Wave propagation</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Chong-wei</creatorcontrib><creatorcontrib>Chen, Yun-Ge</creatorcontrib><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Chong-wei</au><au>Chen, Yun-Ge</au><au>Zhan, Chao</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>139264</spage><epage>139275</epage><pages>139264-139275</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943903</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.139264-139275 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455608612 |
source | IEEE Open Access Journals; Directory of Open Journals (DOAJ); EZB-FREE-00999 freely available EZB journals |
subjects | Atmospheric modeling back-stepping method Case studies Correlation Energy Energy storage ERA-40 wave reanalysis Forecasting Indexes Monitoring Oceans source trace swell energy Water resources Wave power Wave propagation Weather forecasting |
title | Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Source%20Tracing%20of%20the%20Swell%20Energy:%20A%20Case%20Study%20of%20the%20Pacific%20Ocean&rft.jtitle=IEEE%20access&rft.au=Zheng,%20Chong-wei&rft.date=2019&rft.volume=7&rft.spage=139264&rft.epage=139275&rft.pages=139264-139275&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943903&rft_dat=%3Cproquest_cross%3E2455608612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455608612&rft_id=info:pmid/&rft_ieee_id=8850114&rft_doaj_id=oai_doaj_org_article_e1eae147c09e4700b54b21d4f511f574&rfr_iscdi=true |