Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean

During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.139264-139275
Hauptverfasser: Zheng, Chong-wei, Chen, Yun-Ge, Zhan, Chao, Wang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139275
container_issue
container_start_page 139264
container_title IEEE access
container_volume 7
creator Zheng, Chong-wei
Chen, Yun-Ge
Zhan, Chao
Wang, Qing
description During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters.
doi_str_mv 10.1109/ACCESS.2019.2943903
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455608612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8850114</ieee_id><doaj_id>oai_doaj_org_article_e1eae147c09e4700b54b21d4f511f574</doaj_id><sourcerecordid>2455608612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYsoOOZ-wV4KPnfeNEmb-DbK1IEwofM5pMnN7KjrTDtk_97MzuF9yeVwzrnhi6IpgRkhIB_mRbEoy1kKRM5SyagEehWNUpLJhHKaXf_bb6NJ120hjAgSz0fRomwP3mC89trUu03curj_wLj8xqaJFzv0m-NjPI8L3QWxP9jjn-Mt-F1t4pVBvbuLbpxuOpyc33H0_rRYFy_J6-p5WcxfE8NA9EkuIBPSpM5QC6RiaCthLQhRZVRWjkGVaa0lk9ZxKWzmjBbMCEmJySXonI6j5dBrW71Ve19_an9Ura7Vr9D6jdK-r02DCglqJCw3IJHlABVnVUosc5wQx3MWuu6Hrr1vvw7Y9WobUOzC91XKOM9AZCQNLjq4jG-7zqO7XCWgTvjVgF-d8Ksz_pCaDqkaES8JITgQwugPwNl-LA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455608612</pqid></control><display><type>article</type><title>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</title><source>IEEE Open Access Journals</source><source>Directory of Open Journals (DOAJ)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Chong-wei ; Chen, Yun-Ge ; Zhan, Chao ; Wang, Qing</creator><creatorcontrib>Zheng, Chong-wei ; Chen, Yun-Ge ; Zhan, Chao ; Wang, Qing</creatorcontrib><description>During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943903</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Atmospheric modeling ; back-stepping method ; Case studies ; Correlation ; Energy ; Energy storage ; ERA-40 wave reanalysis ; Forecasting ; Indexes ; Monitoring ; Oceans ; source trace ; swell energy ; Water resources ; Wave power ; Wave propagation ; Weather forecasting</subject><ispartof>IEEE access, 2019, Vol.7, p.139264-139275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</citedby><cites>FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</cites><orcidid>0000-0002-1156-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8850114$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zheng, Chong-wei</creatorcontrib><creatorcontrib>Chen, Yun-Ge</creatorcontrib><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</title><title>IEEE access</title><addtitle>Access</addtitle><description>During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters.</description><subject>Atmospheric modeling</subject><subject>back-stepping method</subject><subject>Case studies</subject><subject>Correlation</subject><subject>Energy</subject><subject>Energy storage</subject><subject>ERA-40 wave reanalysis</subject><subject>Forecasting</subject><subject>Indexes</subject><subject>Monitoring</subject><subject>Oceans</subject><subject>source trace</subject><subject>swell energy</subject><subject>Water resources</subject><subject>Wave power</subject><subject>Wave propagation</subject><subject>Weather forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFFLwzAUhYsoOOZ-wV4KPnfeNEmb-DbK1IEwofM5pMnN7KjrTDtk_97MzuF9yeVwzrnhi6IpgRkhIB_mRbEoy1kKRM5SyagEehWNUpLJhHKaXf_bb6NJ120hjAgSz0fRomwP3mC89trUu03curj_wLj8xqaJFzv0m-NjPI8L3QWxP9jjn-Mt-F1t4pVBvbuLbpxuOpyc33H0_rRYFy_J6-p5WcxfE8NA9EkuIBPSpM5QC6RiaCthLQhRZVRWjkGVaa0lk9ZxKWzmjBbMCEmJySXonI6j5dBrW71Ve19_an9Ura7Vr9D6jdK-r02DCglqJCw3IJHlABVnVUosc5wQx3MWuu6Hrr1vvw7Y9WobUOzC91XKOM9AZCQNLjq4jG-7zqO7XCWgTvjVgF-d8Ksz_pCaDqkaES8JITgQwugPwNl-LA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zheng, Chong-wei</creator><creator>Chen, Yun-Ge</creator><creator>Zhan, Chao</creator><creator>Wang, Qing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid></search><sort><creationdate>2019</creationdate><title>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</title><author>Zheng, Chong-wei ; Chen, Yun-Ge ; Zhan, Chao ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-780689c2fc3d01b4edb8dd088b639bf40b6aaa949df598d6fca84c8931c790a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric modeling</topic><topic>back-stepping method</topic><topic>Case studies</topic><topic>Correlation</topic><topic>Energy</topic><topic>Energy storage</topic><topic>ERA-40 wave reanalysis</topic><topic>Forecasting</topic><topic>Indexes</topic><topic>Monitoring</topic><topic>Oceans</topic><topic>source trace</topic><topic>swell energy</topic><topic>Water resources</topic><topic>Wave power</topic><topic>Wave propagation</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Chong-wei</creatorcontrib><creatorcontrib>Chen, Yun-Ge</creatorcontrib><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Chong-wei</au><au>Chen, Yun-Ge</au><au>Zhan, Chao</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>139264</spage><epage>139275</epage><pages>139264-139275</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>During the resource crisis, swell energy received an increasing amount of attention due to its stability, huge energy storage and dominant role in the mixed wave. Investigation of the swell propagation is beneficial for wave energy forecasting, swell monitoring and warning and so on. However, little research has been conducted on this topic so far. The traditional method is to choose a region in advance (short as pre-chosen region) and then detect the propagation termination of the swell of this region, which is limited in effectiveness because the swell of the pre-chosen region may not propagate to the area focused. Based on the 40-year European Centre for Medium-Range Weather Forecast (ECMWF) re-analysis (ERA-40 wave reanalysis), this study proposed a back-stepping method to trace the source of swell energy. The Clipperton Island waters are selected as a case study. Results show that the back-stepping method is an effective way to trace back the source of swell energy. The swells of the Clipperton Island waters mainly come from the winter Hemisphere. The swells need about 120 hours to propagate from the Hawaii waters to the Clipperton Island waters, while 180 hours to propagate from the Maria-Theresa Reef to the Clipperton Island waters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943903</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.139264-139275
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455608612
source IEEE Open Access Journals; Directory of Open Journals (DOAJ); EZB-FREE-00999 freely available EZB journals
subjects Atmospheric modeling
back-stepping method
Case studies
Correlation
Energy
Energy storage
ERA-40 wave reanalysis
Forecasting
Indexes
Monitoring
Oceans
source trace
swell energy
Water resources
Wave power
Wave propagation
Weather forecasting
title Source Tracing of the Swell Energy: A Case Study of the Pacific Ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Source%20Tracing%20of%20the%20Swell%20Energy:%20A%20Case%20Study%20of%20the%20Pacific%20Ocean&rft.jtitle=IEEE%20access&rft.au=Zheng,%20Chong-wei&rft.date=2019&rft.volume=7&rft.spage=139264&rft.epage=139275&rft.pages=139264-139275&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943903&rft_dat=%3Cproquest_cross%3E2455608612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455608612&rft_id=info:pmid/&rft_ieee_id=8850114&rft_doaj_id=oai_doaj_org_article_e1eae147c09e4700b54b21d4f511f574&rfr_iscdi=true