Perceptual-Based HEVC Intra Coding Optimization Using Deep Convolution Networks
In this paper, we propose a novel perceptual-based intra coding optimization algorithm for the High Efficiency Video Coding (HEVC) using deep convolution networks (DCNs). According to the saliency map, the algorithm can intelligently adjust bit rate allocation between the salient and non-salient reg...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.56308-56316 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56316 |
---|---|
container_issue | |
container_start_page | 56308 |
container_title | IEEE access |
container_volume | 7 |
creator | Sun, Xuebin Ma, Han Zuo, Weixun Liu, Ming |
description | In this paper, we propose a novel perceptual-based intra coding optimization algorithm for the High Efficiency Video Coding (HEVC) using deep convolution networks (DCNs). According to the saliency map, the algorithm can intelligently adjust bit rate allocation between the salient and non-salient regions of the video. The proposed strategy mainly consists of two techniques, saliency map extraction, and intelligent bit rate allocation. First, we train a DCN model to generate the saliency map that highlights semantically salient regions. Compared with the texture-based region of interest (ROI) extraction techniques, our model is more consistent with the human visual system (HVS). Second, based on the saliency map, a modified rate-distortion optimization (RDO) method is designed to adaptively adjust bit rate allocation. As a result, the quality of the salient regions will be improved by allocating more bits while allocating fewer bit rates for the non-salient regions. The experimental results demonstrate that our approach can deal with multiple types of video to enhance the visual experience. For conventional videos, the proposed method achieves 0.64-dB PSNR improvement for the salient regions and saves 3.02% bit rate on average compared with HM16.7. Moreover, for conversational videos, the proposed method can significantly reduce the bit rate by 8.65% without dropping the quality of important regions. |
doi_str_mv | 10.1109/ACCESS.2019.2910245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455606654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8705300</ieee_id><doaj_id>oai_doaj_org_article_7e70e738429a489986e3e5c04bbc6f14</doaj_id><sourcerecordid>2455606654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-135234cf555782151f2691b2beed97e1dfd4d3b0127992b8435effe209e9c7e23</originalsourceid><addsrcrecordid>eNpNUU1Pg0AQJUYTG-0v6IXEM3U_WfZYsdomjTWp9bpZYGiolMVd0OivF0rTOJeZvJn3ZjLP8yYYTTFG8n4Wx_PNZkoQllMiMSKMX3gjgkMZUE7Dy3_1tTd2bo-6iDqIi5G3fgWbQt20ugwetIPMX8zfY39ZNVb7scmKauev66Y4FL-6KUzlb10PPQLUXbv6MmV7hF-g-Tb2w916V7kuHYxP-cbbPs3f4kWwWj8v49kqSBmKmgBTTihLc865iAjmOCehxAlJADIpAGd5xjKaIEyElCSJGOWQ50CQBJkKIPTGWw66mdF7VdvioO2PMrpQR8DYndK2KdISlACBQNCIEalZJGUUAgWeIpYkaZhj1mndDVq1NZ8tuEbtTWur7nzV_ZKHKAx5P0WHqdQa5yzk560Yqd4INRiheiPUyYiONRlYBQCcGZFAnCJE_wCgDIJz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455606654</pqid></control><display><type>article</type><title>Perceptual-Based HEVC Intra Coding Optimization Using Deep Convolution Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Xuebin ; Ma, Han ; Zuo, Weixun ; Liu, Ming</creator><creatorcontrib>Sun, Xuebin ; Ma, Han ; Zuo, Weixun ; Liu, Ming</creatorcontrib><description>In this paper, we propose a novel perceptual-based intra coding optimization algorithm for the High Efficiency Video Coding (HEVC) using deep convolution networks (DCNs). According to the saliency map, the algorithm can intelligently adjust bit rate allocation between the salient and non-salient regions of the video. The proposed strategy mainly consists of two techniques, saliency map extraction, and intelligent bit rate allocation. First, we train a DCN model to generate the saliency map that highlights semantically salient regions. Compared with the texture-based region of interest (ROI) extraction techniques, our model is more consistent with the human visual system (HVS). Second, based on the saliency map, a modified rate-distortion optimization (RDO) method is designed to adaptively adjust bit rate allocation. As a result, the quality of the salient regions will be improved by allocating more bits while allocating fewer bit rates for the non-salient regions. The experimental results demonstrate that our approach can deal with multiple types of video to enhance the visual experience. For conventional videos, the proposed method achieves 0.64-dB PSNR improvement for the salient regions and saves 3.02% bit rate on average compared with HM16.7. Moreover, for conversational videos, the proposed method can significantly reduce the bit rate by 8.65% without dropping the quality of important regions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2910245</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bit rate ; Coding ; Convolution ; DCN ; Encoding ; Feature extraction ; HEVC ; High efficiency video coding ; HVS ; Image coding ; Optimization ; Perceptual-based ; Salience ; saliency map ; Video compression</subject><ispartof>IEEE access, 2019, Vol.7, p.56308-56316</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-135234cf555782151f2691b2beed97e1dfd4d3b0127992b8435effe209e9c7e23</citedby><cites>FETCH-LOGICAL-c408t-135234cf555782151f2691b2beed97e1dfd4d3b0127992b8435effe209e9c7e23</cites><orcidid>0000-0002-4867-2282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8705300$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Sun, Xuebin</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>Zuo, Weixun</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Perceptual-Based HEVC Intra Coding Optimization Using Deep Convolution Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we propose a novel perceptual-based intra coding optimization algorithm for the High Efficiency Video Coding (HEVC) using deep convolution networks (DCNs). According to the saliency map, the algorithm can intelligently adjust bit rate allocation between the salient and non-salient regions of the video. The proposed strategy mainly consists of two techniques, saliency map extraction, and intelligent bit rate allocation. First, we train a DCN model to generate the saliency map that highlights semantically salient regions. Compared with the texture-based region of interest (ROI) extraction techniques, our model is more consistent with the human visual system (HVS). Second, based on the saliency map, a modified rate-distortion optimization (RDO) method is designed to adaptively adjust bit rate allocation. As a result, the quality of the salient regions will be improved by allocating more bits while allocating fewer bit rates for the non-salient regions. The experimental results demonstrate that our approach can deal with multiple types of video to enhance the visual experience. For conventional videos, the proposed method achieves 0.64-dB PSNR improvement for the salient regions and saves 3.02% bit rate on average compared with HM16.7. Moreover, for conversational videos, the proposed method can significantly reduce the bit rate by 8.65% without dropping the quality of important regions.</description><subject>Algorithms</subject><subject>Bit rate</subject><subject>Coding</subject><subject>Convolution</subject><subject>DCN</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>HEVC</subject><subject>High efficiency video coding</subject><subject>HVS</subject><subject>Image coding</subject><subject>Optimization</subject><subject>Perceptual-based</subject><subject>Salience</subject><subject>saliency map</subject><subject>Video compression</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Pg0AQJUYTG-0v6IXEM3U_WfZYsdomjTWp9bpZYGiolMVd0OivF0rTOJeZvJn3ZjLP8yYYTTFG8n4Wx_PNZkoQllMiMSKMX3gjgkMZUE7Dy3_1tTd2bo-6iDqIi5G3fgWbQt20ugwetIPMX8zfY39ZNVb7scmKauev66Y4FL-6KUzlb10PPQLUXbv6MmV7hF-g-Tb2w916V7kuHYxP-cbbPs3f4kWwWj8v49kqSBmKmgBTTihLc865iAjmOCehxAlJADIpAGd5xjKaIEyElCSJGOWQ50CQBJkKIPTGWw66mdF7VdvioO2PMrpQR8DYndK2KdISlACBQNCIEalZJGUUAgWeIpYkaZhj1mndDVq1NZ8tuEbtTWur7nzV_ZKHKAx5P0WHqdQa5yzk560Yqd4INRiheiPUyYiONRlYBQCcGZFAnCJE_wCgDIJz</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Sun, Xuebin</creator><creator>Ma, Han</creator><creator>Zuo, Weixun</creator><creator>Liu, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4867-2282</orcidid></search><sort><creationdate>2019</creationdate><title>Perceptual-Based HEVC Intra Coding Optimization Using Deep Convolution Networks</title><author>Sun, Xuebin ; Ma, Han ; Zuo, Weixun ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-135234cf555782151f2691b2beed97e1dfd4d3b0127992b8435effe209e9c7e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bit rate</topic><topic>Coding</topic><topic>Convolution</topic><topic>DCN</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>HEVC</topic><topic>High efficiency video coding</topic><topic>HVS</topic><topic>Image coding</topic><topic>Optimization</topic><topic>Perceptual-based</topic><topic>Salience</topic><topic>saliency map</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xuebin</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>Zuo, Weixun</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xuebin</au><au>Ma, Han</au><au>Zuo, Weixun</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptual-Based HEVC Intra Coding Optimization Using Deep Convolution Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>56308</spage><epage>56316</epage><pages>56308-56316</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we propose a novel perceptual-based intra coding optimization algorithm for the High Efficiency Video Coding (HEVC) using deep convolution networks (DCNs). According to the saliency map, the algorithm can intelligently adjust bit rate allocation between the salient and non-salient regions of the video. The proposed strategy mainly consists of two techniques, saliency map extraction, and intelligent bit rate allocation. First, we train a DCN model to generate the saliency map that highlights semantically salient regions. Compared with the texture-based region of interest (ROI) extraction techniques, our model is more consistent with the human visual system (HVS). Second, based on the saliency map, a modified rate-distortion optimization (RDO) method is designed to adaptively adjust bit rate allocation. As a result, the quality of the salient regions will be improved by allocating more bits while allocating fewer bit rates for the non-salient regions. The experimental results demonstrate that our approach can deal with multiple types of video to enhance the visual experience. For conventional videos, the proposed method achieves 0.64-dB PSNR improvement for the salient regions and saves 3.02% bit rate on average compared with HM16.7. Moreover, for conversational videos, the proposed method can significantly reduce the bit rate by 8.65% without dropping the quality of important regions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2910245</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4867-2282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.56308-56316 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455606654 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Bit rate Coding Convolution DCN Encoding Feature extraction HEVC High efficiency video coding HVS Image coding Optimization Perceptual-based Salience saliency map Video compression |
title | Perceptual-Based HEVC Intra Coding Optimization Using Deep Convolution Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptual-Based%20HEVC%20Intra%20Coding%20Optimization%20Using%20Deep%20Convolution%20Networks&rft.jtitle=IEEE%20access&rft.au=Sun,%20Xuebin&rft.date=2019&rft.volume=7&rft.spage=56308&rft.epage=56316&rft.pages=56308-56316&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2910245&rft_dat=%3Cproquest_doaj_%3E2455606654%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455606654&rft_id=info:pmid/&rft_ieee_id=8705300&rft_doaj_id=oai_doaj_org_article_7e70e738429a489986e3e5c04bbc6f14&rfr_iscdi=true |