A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design

Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.99978-99987
Hauptverfasser: Garcia Leiva, Rafael, Fernandez Anta, Antonio, Mancuso, Vincenzo, Casari, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99987
container_issue
container_start_page 99978
container_title IEEE access
container_volume 7
creator Garcia Leiva, Rafael
Fernandez Anta, Antonio
Mancuso, Vincenzo
Casari, Paolo
description Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.
doi_str_mv 10.1109/ACCESS.2019.2930235
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455605885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8767915</ieee_id><doaj_id>oai_doaj_org_article_bda922b5ca2e499ba1a34036cb70bbe1</doaj_id><sourcerecordid>2455605885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jBt-Wh47VqgWA_tzgIl06mC1PIkJUD-_Zy6KMYLiUe-R4KvKK4F3wjB2x9d3988PW0kF-1GtopLBZ-KCynqtlSg6s__1V-Lq5R2fAm9QNBcFEPHfocj7dndaaY4Y8RXyhTL20jEunmOAd0Ly4H9JOeTDxN7Pnf6MKUcDy6_IS-YWXcMfkjs8Uhx9Dn7acvsaWElv52-FV9G3Ce6es-XxZ_bm-f-rnx4_HXfdw-lq7jOpXOOa6hA1thqx6XV9digBnJSDzUMmo9W4KgaBRoABxg14Mgryzk0KIS6LO5X3SHgzszRv2I8mYDevAEhbg3G7N2ejB2wldKCQ0lV21oUqCquamcbbi2dtb6vWssL_h4oZbMLhzgt5xtZAdQctIZlSq1TLoaUIo0fWwU3Z3fM6o45u2Pe3VlY1yvLE9EHQzd10wpQ_wBdSIs2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605885</pqid></control><display><type>article</type><title>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Garcia Leiva, Rafael ; Fernandez Anta, Antonio ; Mancuso, Vincenzo ; Casari, Paolo</creator><creatorcontrib>Garcia Leiva, Rafael ; Fernandez Anta, Antonio ; Mancuso, Vincenzo ; Casari, Paolo</creatorcontrib><description>Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2930235</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Complexity theory ; Computational modeling ; Decision trees ; interpretability ; Kolmogorov complexity ; Machine learning ; Optimization ; Prediction algorithms ; Regularization ; Training ; Vegetation</subject><ispartof>IEEE access, 2019, Vol.7, p.99978-99987</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</citedby><cites>FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</cites><orcidid>0000-0002-6401-1660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8767915$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Garcia Leiva, Rafael</creatorcontrib><creatorcontrib>Fernandez Anta, Antonio</creatorcontrib><creatorcontrib>Mancuso, Vincenzo</creatorcontrib><creatorcontrib>Casari, Paolo</creatorcontrib><title>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</title><title>IEEE access</title><addtitle>Access</addtitle><description>Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.</description><subject>Algorithms</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Decision trees</subject><subject>interpretability</subject><subject>Kolmogorov complexity</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Regularization</subject><subject>Training</subject><subject>Vegetation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jBt-Wh47VqgWA_tzgIl06mC1PIkJUD-_Zy6KMYLiUe-R4KvKK4F3wjB2x9d3988PW0kF-1GtopLBZ-KCynqtlSg6s__1V-Lq5R2fAm9QNBcFEPHfocj7dndaaY4Y8RXyhTL20jEunmOAd0Ly4H9JOeTDxN7Pnf6MKUcDy6_IS-YWXcMfkjs8Uhx9Dn7acvsaWElv52-FV9G3Ce6es-XxZ_bm-f-rnx4_HXfdw-lq7jOpXOOa6hA1thqx6XV9digBnJSDzUMmo9W4KgaBRoABxg14Mgryzk0KIS6LO5X3SHgzszRv2I8mYDevAEhbg3G7N2ejB2wldKCQ0lV21oUqCquamcbbi2dtb6vWssL_h4oZbMLhzgt5xtZAdQctIZlSq1TLoaUIo0fWwU3Z3fM6o45u2Pe3VlY1yvLE9EHQzd10wpQ_wBdSIs2</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Garcia Leiva, Rafael</creator><creator>Fernandez Anta, Antonio</creator><creator>Mancuso, Vincenzo</creator><creator>Casari, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6401-1660</orcidid></search><sort><creationdate>2019</creationdate><title>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</title><author>Garcia Leiva, Rafael ; Fernandez Anta, Antonio ; Mancuso, Vincenzo ; Casari, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Decision trees</topic><topic>interpretability</topic><topic>Kolmogorov complexity</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Regularization</topic><topic>Training</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia Leiva, Rafael</creatorcontrib><creatorcontrib>Fernandez Anta, Antonio</creatorcontrib><creatorcontrib>Mancuso, Vincenzo</creatorcontrib><creatorcontrib>Casari, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia Leiva, Rafael</au><au>Fernandez Anta, Antonio</au><au>Mancuso, Vincenzo</au><au>Casari, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>99978</spage><epage>99987</epage><pages>99978-99987</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2930235</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6401-1660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.99978-99987
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455605885
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Complexity theory
Computational modeling
Decision trees
interpretability
Kolmogorov complexity
Machine learning
Optimization
Prediction algorithms
Regularization
Training
Vegetation
title A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Hyperparameter-Free%20Approach%20to%20Decision%20Tree%20Construction%20That%20Avoids%20Overfitting%20by%20Design&rft.jtitle=IEEE%20access&rft.au=Garcia%20Leiva,%20Rafael&rft.date=2019&rft.volume=7&rft.spage=99978&rft.epage=99987&rft.pages=99978-99987&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2930235&rft_dat=%3Cproquest_ieee_%3E2455605885%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455605885&rft_id=info:pmid/&rft_ieee_id=8767915&rft_doaj_id=oai_doaj_org_article_bda922b5ca2e499ba1a34036cb70bbe1&rfr_iscdi=true