A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design
Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitti...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.99978-99987 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99987 |
---|---|
container_issue | |
container_start_page | 99978 |
container_title | IEEE access |
container_volume | 7 |
creator | Garcia Leiva, Rafael Fernandez Anta, Antonio Mancuso, Vincenzo Casari, Paolo |
description | Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm. |
doi_str_mv | 10.1109/ACCESS.2019.2930235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455605885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8767915</ieee_id><doaj_id>oai_doaj_org_article_bda922b5ca2e499ba1a34036cb70bbe1</doaj_id><sourcerecordid>2455605885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jBt-Wh47VqgWA_tzgIl06mC1PIkJUD-_Zy6KMYLiUe-R4KvKK4F3wjB2x9d3988PW0kF-1GtopLBZ-KCynqtlSg6s__1V-Lq5R2fAm9QNBcFEPHfocj7dndaaY4Y8RXyhTL20jEunmOAd0Ly4H9JOeTDxN7Pnf6MKUcDy6_IS-YWXcMfkjs8Uhx9Dn7acvsaWElv52-FV9G3Ce6es-XxZ_bm-f-rnx4_HXfdw-lq7jOpXOOa6hA1thqx6XV9digBnJSDzUMmo9W4KgaBRoABxg14Mgryzk0KIS6LO5X3SHgzszRv2I8mYDevAEhbg3G7N2ejB2wldKCQ0lV21oUqCquamcbbi2dtb6vWssL_h4oZbMLhzgt5xtZAdQctIZlSq1TLoaUIo0fWwU3Z3fM6o45u2Pe3VlY1yvLE9EHQzd10wpQ_wBdSIs2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605885</pqid></control><display><type>article</type><title>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Garcia Leiva, Rafael ; Fernandez Anta, Antonio ; Mancuso, Vincenzo ; Casari, Paolo</creator><creatorcontrib>Garcia Leiva, Rafael ; Fernandez Anta, Antonio ; Mancuso, Vincenzo ; Casari, Paolo</creatorcontrib><description>Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2930235</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Complexity theory ; Computational modeling ; Decision trees ; interpretability ; Kolmogorov complexity ; Machine learning ; Optimization ; Prediction algorithms ; Regularization ; Training ; Vegetation</subject><ispartof>IEEE access, 2019, Vol.7, p.99978-99987</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</citedby><cites>FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</cites><orcidid>0000-0002-6401-1660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8767915$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Garcia Leiva, Rafael</creatorcontrib><creatorcontrib>Fernandez Anta, Antonio</creatorcontrib><creatorcontrib>Mancuso, Vincenzo</creatorcontrib><creatorcontrib>Casari, Paolo</creatorcontrib><title>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</title><title>IEEE access</title><addtitle>Access</addtitle><description>Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.</description><subject>Algorithms</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Decision trees</subject><subject>interpretability</subject><subject>Kolmogorov complexity</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Regularization</subject><subject>Training</subject><subject>Vegetation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jBt-Wh47VqgWA_tzgIl06mC1PIkJUD-_Zy6KMYLiUe-R4KvKK4F3wjB2x9d3988PW0kF-1GtopLBZ-KCynqtlSg6s__1V-Lq5R2fAm9QNBcFEPHfocj7dndaaY4Y8RXyhTL20jEunmOAd0Ly4H9JOeTDxN7Pnf6MKUcDy6_IS-YWXcMfkjs8Uhx9Dn7acvsaWElv52-FV9G3Ce6es-XxZ_bm-f-rnx4_HXfdw-lq7jOpXOOa6hA1thqx6XV9digBnJSDzUMmo9W4KgaBRoABxg14Mgryzk0KIS6LO5X3SHgzszRv2I8mYDevAEhbg3G7N2ejB2wldKCQ0lV21oUqCquamcbbi2dtb6vWssL_h4oZbMLhzgt5xtZAdQctIZlSq1TLoaUIo0fWwU3Z3fM6o45u2Pe3VlY1yvLE9EHQzd10wpQ_wBdSIs2</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Garcia Leiva, Rafael</creator><creator>Fernandez Anta, Antonio</creator><creator>Mancuso, Vincenzo</creator><creator>Casari, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6401-1660</orcidid></search><sort><creationdate>2019</creationdate><title>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</title><author>Garcia Leiva, Rafael ; Fernandez Anta, Antonio ; Mancuso, Vincenzo ; Casari, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ccc0854526a98c02b86f7a85ec28d65d80fb1af3735855ad5f85af04b0057a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Decision trees</topic><topic>interpretability</topic><topic>Kolmogorov complexity</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Regularization</topic><topic>Training</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia Leiva, Rafael</creatorcontrib><creatorcontrib>Fernandez Anta, Antonio</creatorcontrib><creatorcontrib>Mancuso, Vincenzo</creatorcontrib><creatorcontrib>Casari, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia Leiva, Rafael</au><au>Fernandez Anta, Antonio</au><au>Mancuso, Vincenzo</au><au>Casari, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>99978</spage><epage>99987</epage><pages>99978-99987</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2930235</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6401-1660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.99978-99987 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455605885 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Complexity theory Computational modeling Decision trees interpretability Kolmogorov complexity Machine learning Optimization Prediction algorithms Regularization Training Vegetation |
title | A Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Hyperparameter-Free%20Approach%20to%20Decision%20Tree%20Construction%20That%20Avoids%20Overfitting%20by%20Design&rft.jtitle=IEEE%20access&rft.au=Garcia%20Leiva,%20Rafael&rft.date=2019&rft.volume=7&rft.spage=99978&rft.epage=99987&rft.pages=99978-99987&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2930235&rft_dat=%3Cproquest_ieee_%3E2455605885%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455605885&rft_id=info:pmid/&rft_ieee_id=8767915&rft_doaj_id=oai_doaj_org_article_bda922b5ca2e499ba1a34036cb70bbe1&rfr_iscdi=true |